

Checking Safety by
Inductive Generalization of

Counterexamples to Induction

Aaron R. Bradley and Zohar Manna
Stanford University

(Aaron is visiting EPFL and will be at CU Boulder)

#latch vars: 170
#coi vars: 69
[1 1 0 0 0% 0% 0% 0% 0]
(l332 | !l662)
[2 1 0 1 9% 50% 49% 23% 25]
(l348 | !l668)
[3 1 0 2 23% 50% 33% 19% 71]
(!l342 | !l668)
[4 1 0 3 25% 42% 42% 18% 86]
(l624 | l658 | !l626 | !l530 | !l666 | !l668)
[5 1 0 4 28% 60% 39% 14% 181]

...
[133 1 10 122 52% 58% 45% 1% 9000]
(l464 | l586 | !l664 | !l668)
[134 1 10 123 52% 58% 45% 1% 9060]
(l574 | l586 | l638 | !l576 | !l372 | !l668)
[135 1 10 124 52% 58% 45% 1% 9143]
(l638 | !l662 | !l372 | !l668)
[136 1 10 125 52% 58% 46% 1% 9197]
Proved
Time: 11 (1)
VmPeak: 12820 kB

Benchmark: intel_005
Solved: vis-grab (12 minutes, 178MB)

Our time: 11 seconds (1 process)
Our memory: 13MB

(Source: HWMCC'07)

#latch vars: 350
#coi vars: 182
[1 1 0 0 0% 0% 0% 0% 0]
(l692 | !l1354 | !l1388)
[2 1 0 1 13% 22% 66% 18% 34]
(l922 | !l702 | !l738 | !l1388)
[3 1 0 2 30% 46% 46% 14% 88]
(l698 | !l926 | !l922 | !l1388)
[4 1 0 3 39% 46% 48% 12% 133]
(l764 | !l756 | !l894 | !l740 | !l1388)
[5 1 0 4 47% 43% 50% 10% 187]

...
[1144 1 60 1083 68% 49% 51% 1% 78386]
(l1384 | !l740 | !l1214 | !l768 | !l930 | !l1388)
[1145 1 60 1084 68% 49% 51% 1% 78453]
(l850 | l854 | !l1388)
[1146 1 60 1085 68% 49% 51% 1% 78515]
(l814 | l1014 | l1238 | !l886 | !l1388)
[1147 1 60 1086 68% 49% 51% 1% 78610]
Proved
Time: 285 (4)
VmPeak: 91748 kB

Benchmark: intel_006
Solved: None

Our time: 5 minutes (1 process)
Our memory: 92MB

ID: 979581
#latch vars: 350
#coi vars: 182
[1 1 0 0 0% 0% 0% 0% 0]
(l692 | !l1354 | !l1388)
[2 1 0 1 14% 22% 66% 17% 34]
(l706 | !l702 | !l1388)
[3 1 0 5 22% 29% 64% 14% 68]
(l810 | l874 | !l882 | !l1388)
[4 1 0 18 33% 40% 62% 11% 136]
(l780 | l1102 | l1166 | !l772 | !l1066 | !l1150 | !l1388)
[5 1 0 32 43% 45% 58% 8% 233]
...
[175 2 93 1167 66% 49% 50% 2% 12166]
(l800 | l806 | !l1056 | !l1388)
[176 1 94 1176 66% 49% 51% 2% 12249]
(l1086 | l1090 | !l1388)
[177 1 97 1177 66% 49% 51% 2% 12315]
[178 2 98 1178 66% 49% 50% 2% 12358]
Proved
Time: 49 (2)
VmPeak: 29204 kB

Benchmark: intel_006
Solved: None

Our time: 1 minute (8 processes)
Our memory: 30MB (x 8)

Parallel Scaling

ID: 962250
#latch vars: 1307
#coi vars: 608
[1 1 0 0 0% 0% 0% 0% 0]
(l2606 | !l5154 | !l5216)
[2 1 0 3 24% 21% 69% 11% 34]
(!l2616 | !l2612 | !l5216)
[3 1 0 5 31% 27% 61% 10% 57]
(l4430 | !l2616 | !l5216)
[4 1 0 14 42% 33% 55% 8% 100]
(l2616 | !l2634 | !l5216)
[5 1 0 18 45% 35% 54% 7% 122]
...
[238 1 0 1813 82% 47% 52% 0% 14661]
(l4426 | l4806 | !l3680 | !l5216)
[239 1 0 1821 82% 47% 52% 0% 14732]
(l3554 | l5018 | l5046 | !l5216)
[240 1 0 1828 82% 47% 52% 0% 14800]
(!l5114 | !l5110 | !l5216)
[241 1 0 1834 82% 47% 52% 0% 14856]
Proved
Time: 439 (4)
VmPeak: 37752 kB

Benchmark: intel_007
Solved: None

Our time: 8 minutes (8 processes)
Our memory: 40MB (x 8)

Other hard instances from HWMCC'07
spec10-and-env (AMBA)

8 processes: 1.5 hours, 900MB/process

nusmv.reactor^2.C (TIP)
1 process: 26 minutes, 22MB
8 processes: 4 minutes, 19MB/process

nusmv.reactor^6.C (TIP)
1 process: 43 minutes, 30MB
8 processes: 5 minutes, 19MB/process

Different set of benchmarks in paper (PicoJava II).

Not a “magic bullet”: utterly fails on
cmu.dme[1/2].B, eijk.bs*, ...

But perhaps a promising approach?

The Verification Team Analogy

Verification Team

1. Individuals
2. Lemmas
3. Property

Inductive Generalization

1. Processes
2. Inductive Clauses
3. Property

Lemma: Summary of observation and proof

Goal: Inductive strengthening of property

Lemma: Inductive Clause
1. Counterexample to induction:

State s: !l2606 & ... & l5154 & ... & l5216
Clause ~s: l2606 | ... | !l5154 | ... | !l5216

No counterexample?
Then property is valid.

Lemma: Inductive Clause
2. Minimal inductive subclause:

Original Clause ~s:

l2606 | ... | !l5154 | ... | !l5216

608 literals. Inductive? Maybe, maybe not.

Minimal Inductive Subclause:

l2606 | !l5154 | !l5216

3 literals (informative!).
Inductive relative to property and previous clauses.

Inductive Generalization

Maximal inductive subclause:
● Unique.
● Best approximation of computing preimage to fixpoint.
● Weak: Excludes “only” states that can reach s.

Clause ~s: l2606 | ... | !l5154 | ... | !l5216

Minimal inductive subclause:
● Not unique.
● Minimal: Strict subclauses are not inductive.
● Strong: Also excludes many states that cannot reach s.

Inductive explanation of why s and similar states are unreachable.

Discovery of MI Subclause
[1 1 0 0 0% 0% 0% 0% 0]
(l2606 | !l5154 | !l5216)
[2 1 0 3 24% 21% 69% 11% 34]
(!l2616 | !l2612 | !l5216)
[3 1 0 5 31% 27% 61% 10% 57]
(l4430 | !l2616 | !l5216)
[4 1 0 14 42% 33% 55% 8% 100]
(l2616 | !l2634 | !l5216)
[5 1 0 18 45% 35% 54% 7% 122]
608 literals.
But <100 SAT problems/iteration.

Discovery of MI Subclause

1. O(n) SAT queries to find maximal IS c
1
.

In practice: many fewer than n

2. O(m lg n) SAT queries to find “small” m-literal
inductive subclause c

2
 of c

1
.

In practice: m is very small

3. Brute force to guarantee minimality.
In practice: Algorithm 2 minimizes effects

Many “easy” SAT queries.

Related Work
● Interpolation-based model checking [McMillan]
● CEGAR (Jain et al., Clarke et al., ...)

Abstract transition relation

● BMC, k-induction [Biere et al., Sheeran et al., ...]
Reduce to large SAT/QBF queries.

● Strengthening in k-induction
[deMoura et al., Vimjam et al., Awedh et al., ...]
Based on preimage of counterexample.
Weak, so k-induction is main principle.

Ongoing & Future Work
1. Combine with k-induction for small k.

Better counterexamples to induction.
Stronger clauses.
Balance k and ease of SAT queries.

2. Combine with BMC for better debugging.
Add clauses to BMC SAT query online.

3. Other types of lemmas?

4. Better engineering.
Obstacle to handling large Intel benchmarks.

Conclusions
● Principle: Iterative discovery of lemmas.

Control resource usage.
Run in parallel.

● Principle: Use induction to generalize.

● Mechanism:
Fast discovery of minimal inductive subclauses.

Questions? Comments?

