

FMCAD 07

#### Co-design

Metropolis Motivation

### COSE

SE example Constraints

#### Cases

Fabric Vision

# GLOBAL OPTIMIZATION FOR COMPOSITIONAL SYSTEMS

F. Zaraket, J. Pape, A. Aziz, M. Jacome, S. Khurshid

November 13, 2007

< □ > < 图 > 图 目



## FMCAD 07

### Co-design

Metropolis Motivation

### COSE

SE example Constraints

# Cases

Fabric Vision

# CO-DESIGN OF EMBEDDED SYSTEMS

- The Metropolis framework
- Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation

## 3

- Case Studies
  - Switch fabric
  - Vision system

# UTEECE

# OVERVIEW OF EMBEDDED SYSTEMS

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE

SE example Constraints

Cases

Fabric Vision

- Composition of hardware and software IP modules
  - Communicate with dedicated hardware devices
- Heterogeneous by nature
  - Application specific integrated circuits (ASICs)
  - Field programmable gate arrays (FPGAs)
  - Embedded software running on one or more processors
- Applications: communications, image processing, and automotive electronics

▲□▶▲콜▶ 콜|ᆋ 😱

# UTEECE

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE

SE example Constraints

Cases

Fabric Vision

- Techniques exist to optimize each IP module and the underlying network (Ch+-DAC-95,HwSwCoDesign-02)
- Integrating computing components introduce new opportunities for optimizations
- Need for co-optimization techniques
  - Work across components
  - Work across hardware and software boundaries

▲□▶▲콜▶ 콜|ᆋ 😱

# ut ece C

COSE

FMCAD 07

Co-design

Metropolis Motivation

## COSE

SE example Constraints

# Cases

Fabric Vision

- Techniques exist to optimize each IP module and the underlying network (Ch+-DAC-95,HwSwCoDesign-02)
- Integrating computing components introduce new opportunities for optimizations
- Need for co-optimization techniques
  - Work across components
  - Work across hardware and software boundaries

# IMPORTANT QUESTIONS

 Can software be developed before hardware is committed?

# UT ECE C

COSE

FMCAD 07

Co-design

Metropolis Motivation

## COSE

SE example Constraints

# Cases

Fabric Vision

- Techniques exist to optimize each IP module and the underlying network (Ch+-DAC-95,HwSwCoDesign-02)
- Integrating computing components introduce new opportunities for optimizations
- Need for co-optimization techniques
  - Work across components
  - Work across hardware and software boundaries

# IMPORTANT QUESTIONS

- Can software be developed before hardware is committed?
- What if new versions of software used hardware that was optimized away?



# FMCAD 07

#### Co-design

Metropolis Motivation

### COSE

SE example Constraints

# Cases

Fabric Vision

# CO-DESIGN OF EMBEDDED SYSTEMS • The Metropolis framework

Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation

## 3

- Case Studies
  - Switch fabric
  - Vision system



# THE METROPOLIS DESIGN FRAMEWORK [BA+-COMPUTER-03]

COSE

FMCAD 07

### Co-design

Metropolis Motivation

## COSE

SE example Constraints

### Cases

Fabric Vision

- Express embedded systems in Metropolis Meta Model (MMM) netlists
  - MMM extends a subset of the Java programming language
- Separate computation and communication
  - Processes: computing elements
  - Media: communication elements
- Independent of the model of computation (MoC)
  - Similar to the tagged signal model (Ed+-IEEE-97)

▲□▶▲문▶ 뢴티 📊

# **METROPOLIS** ARCHITECTURE OF METROPOLIS



▲□▶▲콜▶ 뢴레 🗍



## FMCAD 07

### Co-design

Metropolis

Motivation

### COSE

SE example Constraints

# Cases

Fabric Vision

# Co-design of embedded systems The Metropolis framework

Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation



- Case Studies
  - Switch fabric
  - Vision system

▲□▶▲필▶ 필말 📳

# **UTSWITCH FABRIC EXAMPLE**



- Optimization opportunities: IP traffic only, dedicated ports
- Need for co-optimization techniques

9



# FMCAD 07

#### Co-desian

Metropolis Motivation

## COSE

SE example Constraints

#### Cases Fabric

**2** CO-OPTIMIZATION USING SYMBOLIC EXECUTION

• Symbolic execution by example

Co-design of embedded systemsThe Metropolis framework

Motivation for co-optimization

Constraint detection and propagation

## 3

- Case Studies
  - Switch fabric
  - Vision system

▲□▶▲불▶ 불|레 📊 ](



# FMCAD 07

### Co-desian

Metropolis Motivation

### COSE

SE example Constraints

# Cases

Fabric Vision Co-design of embedded systems

- The Metropolis framework
- Motivation for co-optimization

CO-OPTIMIZATION USING SYMBOLIC EXECUTION
 Symbolic execution by example

□ > < Ξ > Ξ Ξ

Constraint detection and propagation



- Case Studies
  - Switch fabric
  - Vision system



# Symbolic execution by example Juzi/CVC-Lite [Kh+-TACAS-03]

| COSE        | int x y:         | Г |
|-------------|------------------|---|
| FMCAD 07    | 1111 X, y,       | L |
|             | if $(x > y)$ {   |   |
| Co-design   | x = x + y;       |   |
| Motivation  | y = x - y;       |   |
|             | x = x - y;       |   |
| Constraints | if $(x - y > 0)$ |   |
| Cases       |                  |   |
| Fabric      | assert(false)    |   |
| Vision      | }                |   |

$$x = A, y = B$$

▲□▶▲콜▶ 필리 〒 12



FN

Metro Motiv COS SE ex Cons Cons Fabri Visio

# Symbolic execution by example Juzi/CVC-Lite [KH+-TACAS-03]

| COSE    | int x v:                 |  |
|---------|--------------------------|--|
|         | ПП <b>х</b> , <b>у</b> , |  |
|         | if (x > y) {             |  |
| design  | x = x + y;               |  |
| ration  | y = x - y;               |  |
| ample   | x = x - y;               |  |
| traints | if (x - y > 0)           |  |
| es      |                          |  |
| с       | assert(false)            |  |
| n       | }                        |  |

$$x = A, y = B$$
$$A > ?B$$

▲□▶▲콜▶ 필리 〒 12





< □ > < 필 > 필 = 규 12





< □ > < 필 > 필 = 규 12





< □ > < 분 > 분)는 [+] 12





< □ > < 분 > 분)는 [+] 12





< □ > < 분 > 분)는 [+] 12





▲□▶▲콜▶ 필⊨ 〒 12





< □ ▶ < 분 ▶ 된 = [+] 12





 COSE instruments MMM code to perform symbolic execution

▲□▶▲臣▶ 王曰曰 []



# FMCAD 07

### Co-design

Metropolis Motivation

#### COSE SE example Constraints

Cases Fabric Vision

- Co-design of embedded systems
- The Metropolis framework
- Motivation for co-optimization
- 2 CO-OPTIMIZATION USING SYMBOLIC EXECUTION
  Symbolic execution by example
  - Constraint detection and propagation
  - Case Studies
    - Switch fabric
    - Vision system

# **TETER CONSTRAINT DETECTION**

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE SE example

Constraints

### Cases

Fabric Vision

- Use symbolic execution on component level
  - Detect local invariants—constraints
  - Accumulate path conditions
- Annotate ports with detected constraints
- Quality of detected invariants
  - Designer may not know them
  - Designer may not recognize them as useful to optimize other components

# **TEACT** CONSTRAINT PROPAGATION

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE

SE example Constraints

\_

Fabric Vision

- Build dependency map between components
- Propagate constraints to other components
  - Start with detected constraints as initial path conditions
  - Use symbolic execution to propagate constraints

◆□ ▶ < 图 ▶ 图 Ⅰ</p>

# **MMM** AND SYMBOLIC EXECUTION

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE

SE example Constraints

Cases

Fabric Vision • Translate MMM into inlined Java

- MMM is an extension of a Java subset
- Process, medium, and netlist: class
- Juzi instruments Java code
- CVC-Lite solves and simplifies path conditions

+ = > + = > = = =

# **UNTREE** COSE OPTIMIZATIONS

### COSE

FMCAD 07

### Co-design

Metropolis Motivation

### COSE SE example Constraints

## Cases

Fabric Vision Qualitatively different than those detected by local compiler optimizations

- Eliminate dead code infeasible path conditions
- Detect range restrictions and re-encode variables
- Detect mutually exclusive executions
  - Target resources sharing and multiplexing
- Annotate MMM with constraints and pass to synthesis tools
  - Apply constant propagation, redundancy removal, and observability don't care reductions

▲□▶▲콜▶ 콜|= 〒 17

# **UNTREECE** COSE ARCHITECTURE



▲□▶▲불▶ 분|비 규. 18



# FMCAD 07

#### Co-desian

Metropolis Motivation

## COSE

SE example Constraints

## Cases

Fabric Vision Co-design of embedded systems

- The Metropolis framework
- Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation



- Switch fabric
- Vision system

▲□▶▲불▶ 퇴범 📊 19



# FMCAD 07

#### Co-desian

Metropolis Motivation

## COSE

SE example Constraints

## Cases

Fabric Vision

- Co-design of embedded systems
- The Metropolis framework
- Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation



Vision system

▲□▶▲불▶ 뢴벌 📊 20



# MMM FOR SWITCH FABRIC EXAMPLE OPPORTUNITIES: IP TRAFFIC ONLY, DEDICATED PORTS



Processes: compute schedule, perform transfer, update



# CASE STUDY: SWITCH FABRIC MIXED TRAFFIC, MULTIPORT, 755 LINES OF MMM CODE



# IP traffic only

- 4 input ports, 4 output ports, and 8×16 packet buffers
- 192 minutes and 37K symbolic variables



# CASE STUDY: SWITCH FABRIC MIXED TRAFFIC, MULTIPORT, 755 LINES OF MMM CODE



- 4 input ports, 8 output ports, and 8×16 packet buffers
- Enabled dropping 4 output ports
- 247 minutes and 61K symbolic variables



# FMCAD 07

#### Co-desian

Metropolis Motivation

## COSE

SE example Constraints

#### Cases Fabric Vision

Co-design of embedded systems

- The Metropolis framework
- Motivation for co-optimization

Co-optimization using symbolic executionSymbolic execution by example

Constraint detection and propagation



Vision system

▲□▶▲불▶ 불|= 📊 24



# CASE STUDY: OBJECTID VISION SYSTEM FLOW DIAGRAM, 4K LINES OF C/RTL CODE



- Labels objects in image with identified names
- Developed for military and medical purposes
  - Deployed for home surveillance applications



# CASE STUDY: OBJECTID VISION SYSTEM CLASS DIAGRAM, 1255 LINES OF MMM



• 4 process classes, 3 media classes, and 10 Interfaces

◆□ ▶ < 图 ▶ 图 Ⅰ</p>



# CASE STUDY: OBJECTID VISION SYSTEM Results: low resolution capture



< □ ▶ < 분 ▶ 분 | = | = 27



# CASE STUDY: OBJECTID VISION SYSTEM Results: LOW RESOLUTION CAPTURE



- Dropped 2 edge detectors in the first iteration
- Dropped a segmentation process in the second iteration
- 15 minutes and 13K symbolic variables



# FUTURE...

COSE

FMCAD 07

Co-design

Metropolis Motivation

COSE

SE example Constraints

Cases

Fabric Vision

- Use a difference equation solver instead of CVC-Lite
- Use symbolic execution to optimize linking compilable software modules

▲□▶▲불▶ 퇴⊨ 📊 28



# THANK YOU!

### COSE

## FMCAD 07

### Co-design

Metropolis Motivation

### COSE

SE example Constraints

### Cases

Fabric Vision

# • Questions?

- Can software be developed before hardware is committed?
- What if new versions of software used hardware that was optimized away?

◆口▶★臣▶ 建田,

• ...



FMCAD 07

Answers





# **W**FFECE SOFTWARE LATENCY QUESTION

COSE

FMCAD 07

Answers

Can software be developed before hardware is committed?

- Metropolis supports different design abstraction and implementation refinement levels
  - At each refinement level discard COSE optimizations and compute again

▲□▶▲콜▶ 펠릭 🗐 31

# **TETECE** FLEXIBILITY QUESTION

COSE

FMCAD 07

Answers

What if new versions of software used hardware that was optimized away?

- COSE produces the path conditions it used to optimize the design
  - Can be used as a guide to avoid adding optimized hardware
  - Can be used to undo the optimizations

# **UTERECE** CLASSICAL SEAT BELT EXAMPLE...



▲□▶▲콜▶ 필리 〒 33