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eCall: Safety-Critical Automotive Application

◮ Automatic emergency call system

◮ A phone call is automatically emitted when car sensors detect
an accident

4 distributed components

◮ Sensors: severity

◮ Navigation System:
position

◮ Mobile Phone: send
information

◮ eCall: central
application



The Verisoft Project

◮ CLI: original work on stack proof (Moore et al.)

◮ Verisoft: Pervasive verification of distributed systems

Formal Proofs of

◮ Applications

◮ Operating systems

◮ Compilers

◮ Processors

◮ FlexRay bus

∗ Asynchronous
communications



Asynchronous Communications

◮ Clock imperfections
◮ drift: different clocks with different rates
◮ jitter: clocks without constant rates

◮ Metastability
◮ Metastable states: register output undefined
◮ Resolution: output stabilized non-deterministically to 1 or 0



FlexRay Architecture: Schedule Overview

FlexRay bus

A B C

◮ Time divided into rounds

◮ Each round divided into slots
tl

slot0 slot1 . . . slotj slotn−1

roundi

tk

◮ Every unit owns one slot
◮ slot0 → A
◮ slot1 → B
◮ slotj → C

◮ Clock synchronization algorithm



FlexRay Verification: Overview

tl

slot0 slot1 . . . slotj slotn−1

roundi

tk

◮ Clock synchronization correctness
◮ All units agree on global timing

◮ Schedule correctness
◮ Unit C starts sending m at time tk at the earliest
◮ Unit C stops sending at time tl at the latest

◮ Transmission correctness
◮ At time tl , all units have received m
◮ Functional correctness + timing analysis



Related Work

Physical layer protocol analysis

◮ First work by Moore (1993)
◮ Biphase mark protocol
◮ Theorem proving (Nqthm)

◮ Contemporary work by Bosscher, Polak and Vaandrager
(1994)

◮ Philips audio control protocol

◮ Recent work by Brown and Pike (2006)
◮ Biphase mark and 8N1 protocols
◮ k-induction (SAL)

◮ Recent work by Vaandrager and de Groot (2007)
◮ Biphase mark protocol
◮ Real-time model checking (Uppaal)

All works on abstract models, no real hardware



Contribution

◮ General formal model of clock domain crossing
◮ Metastability
◮ Clock drift/jitter
◮ Detailed timing parameters
◮ Realization in Isabelle/HOL

◮ Mixed with gate-level hardware designs
◮ Combination of theorem proving with automatic tools

◮ Proof of a FlexRay-like hardware interface
◮ Basis theorem for pervasive verification of distributed systems
◮ Functional correctness and timing analysis
◮ Bounds on crucial parameter of the bit clock synchronization

algorithm



Outline

Overall Verification Approach

FlexRay Hardware Interface

Clock Domain Crossing Model

Mixing Digital and Analog

Final Correctness Proof



Verification Method
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Verification Method: CDC Model

Model relevant phenomena
- Metastability
- Clock drift/jitter
Main Theorem
- Bit transfer correctness

Timing analysis
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Verification Method: Mixed A/D World

- Hardware models (discrete time)

Link between

Main Theorem
- Bit transfer correctness
- Mixed A/D conclusion

- CDC model (dense time)

Automatic tools apply
- NuSMV in Isabelle (Tverdyshev)

FPGA

Digital Properties

(NuSMV)

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed

(Isabelle)

Automatic

Translation

Correctness Theorem

Arbitrary long messages
Timing analysis

Complex Inductive Proof
(Isabelle)

HW Design

(Isabelle)



Verification Method: HW Design

- Isabelle model
FlexRay Hardware

- FPGA model

Timing analysis
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Verification Method: Final Inductive Proof

- (2) Synchronization hardware

- Message length (byte number)
Induction

- (1) and (2) not independent

Property about
- (1) State machine

FPGA

Complex Inductive Proof
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Digital Properties
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DIGITAL
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Outline: HW Design

- Isabelle model
FlexRay Hardware

- FPGA model

Timing analysis

Complex Inductive Proof
(Isabelle)

Digital Properties

(NuSMV)

(Isabelle)

FPGA

HW Design

CDC Model
(Isabelle)

ANALOG

DIGITAL

A/D World

Mixed
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Automatic

Translation

Correctness Theorem

Arbitrary long messages



FlexRay Architecture: Protocol Overview

done = 0

b[0]BSS[0] BSS[1]

idle

start

done = 1

FSS
TSS

FES[1]FES[0]

b[7]

b[1]
b[2]

b[3]

b[4]
b[5]b[6]

◮ Receiver and sender implements the same control automaton

◮ Frames follow the following format

f (m) = 〈TSS,FSS,BSS,m[0], . . . ,BSS,m[l − 1],FES〉

◮ Byte synchronization sequence BSS = 10

◮ Each bit sent 8 times + majority voting



FlexRay Architecture: Bit Clock Synchronization

reset

BSS[1] byte BSS[0] BSS[1]

reset

BSS[0]

0 0 0 0 0 0 0 0

2 3 4 5

1 1 1 1 1 11 1

2 3 4 56 7 8 1 6 6 7 8 12 1 6 7 8 1 2 6 7 8 1.....

.....

Sample
count cnt

VotedVal
0

3 4 5 2 3 4 5

1 1 1 1 1 11 1 0 0 0 0 0 0 0 0

◮ Strobe when cnt = 5

◮ cnt reset to 2 at synchronization edges

◮ Values 5 and 2 fixed by specification document

(Figure 3-8 page 243 of Protocol Specification v2.1)



Bit Clock Synchronization and Metastability

reset

BSS[1] byte BSS[0] BSS[1]

reset

BSS[0]

0 0 0 0 0 0 0

2 3 4 5 2 3 4 51 6 7 8 1 2 6 7 8

1 1 1 1 1 11 1

metastability

6 7 8 1 6 6 7 8 1

0

.....

.....

Sample
count cnt

VotedVal
0 0 0 0 0 0 01

drift

2 3 4 5 2 3 4 5

1 1 1 1 1 11 1 0

Objective: always sample (roughly) in the middle

◮ Potential metastability when sampling around falling or rising
edges

◮ Misalignment due to clock drift

◮ Spikes (ignored)

◮ Roughly in the middle = 8 bits - first - last = 6 bits



Receiver Input Stage

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx



Receiver Input Stage

2-stage synchronizer (metastability)

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

Reg. ♯2 never metastable
Non-det. to 0 or 1



Receiver Input Stage

5-majority voting

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx



Receiver Input Stage

bit clock
synchronization

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

sync high on falling edges
only if state idle or BSS[1]
disable strobing
reset counter (to yyy)



Receiver Input Stage

strobing
mechanism

v t
?
6= v t−1

rb.we
R

1

b7
strobe

idle ∨ BSS[1]

inpr R R SH[3:0]

5-Maj1

v

BYTE[7:0]

sync

cnt
?
= xxx

strobe high when cnt = xxx

Store v in BYTE

clock control automaton



Outline: CDC Model
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General Assumptions

◮ 3-valued logic:
◮ 0, 1 for “low” and “high” voltages
◮ Ω for any other voltage

◮ Time represented by nonnegative reals (R≥0 )

◮ Signals are functions from time to {0, 1,Ω}

◮ Transition from low (high) to high (low) via Ω
◮ In particular, output signal of registers
◮ Consequence: metastable states when sampling Ω

◮ Clocks represented by their period τ
◮ Date of edge ♯c on unit u noted eu(c) = c · τu

◮ Edges have no width



Relating Senders and Receivers

cy(ξ, c)

es (c + 16)

BSS[0]FSS BSS[1]TSSFES

es (c)

synchronization sequence

sender side

receiver side

Ω x

(clock edges)

sender output

◮ Sender put x on bus at time es(c)

◮ ξ first “affected” (receiver) cycle (to sample x or Ω)



Metastability

cy(ξ, c)

es (c + 16)

+β
ξ
c

BSS[0]FSS BSS[1]TSSFES

es (c)

synchronization sequence

sender side

receiver side

Ω x

(clock edges)

sender output

◮ Metastable state when sampling Ω,

◮ If cy (ξ, c) on Ω, then metastable state

◮ we may look one cycle later, at cy(ξ, c) + β
ξ
c :

◮ βξ
c = 0 if no metastable state at cy(ξ, c)

◮ βξ
c = 1 otherwise



Main Analog Theorem: Bit Transfer Correctness

0 0 0 0 0 0 0 ?

0 0 0 0 0 0 1 0 

c c + 8

β = 0

β = 1

sender

receiver

◮ From sender cycle c

◮ Bit sent 8 times

◮ First affected cycle given:
◮ cy (ξ, c)

Theorem
◮ At least 7 samples on receiver side
◮ Possible shift of 1 cycle due to metastability



Clock Drift and Jitter

◮ Clocks not constant over time
◮ Drift bounded by percentage δ of reference period

1 − δ ≤
τu

τref

≤ 1 + δ

◮ Lemma
◮ Within π cycles, clocks cannot drift by more than 1 cycle
◮ From one known mark, next marks have 3 possible positions

cy(ξ + α + χ, c + α)

sender

receiver

+α

+α + χ

•α ≤ π

•χ ∈ {−1, 0, 1}

cy(ξ, c)



Outline: Mixed A/D World

- Hardware models (discrete time)
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- Mixed A/D conclusion
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CDC Model and Hardware Designs

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ Goal: insert CDC model without modifying designs



CDC Model and Hardware Designs

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ Goal: insert CDC model without modifying designs

◮ 2 digital transitions to “move” x to y



CDC Model and Hardware Designs

aRs aRr

1

y
Busx

Rr
clk r

receiversender

clks

Rs

ces

outs

1
inpr

◮ 2 digital transitions to “move” x to y

◮ One analog register function matched to one digital transition

◮ Designs not modified



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Example: Majority Voting

R

5-Maj

v

SH[3:0]RrRs

inpr

x

◮ Using NuSMV

inp
t+[0:6]
r = x implies v t+[4:10] = x

◮ In Isabelle
◮ Insert CDC model for sender cycle c and cy(ξ, c)

inpc+[0:7]
s = x implies inpξ+βξ

c +[0:6]
r = x

◮ then we insert NuSMV result

inpc+[0:7]
s = x implies vξ+βξ

c +[4:10] = x



Outline: Final Correctness Proof
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Correctness Theorem: Overview

◮ Functional Correctness
◮ For each byte, there exists one receiver cycle from which the

byte is correctly sampled
◮ This takes 79 to 82 cycles

Factor χ ∈ {−1, 0, +1}
Factor β ∈ {0, +1}

◮ Valid counter values: 1 ≤ (strobe - reset) ≤ 3

◮ Timing Analysis
◮ Derived from functional correctness

→ when receiver affected by first bit of last byte
→ number of cycles to finish transmission

◮ Bounded drift used to bound transmission time



Functional Correctness: Proof Overview

◮ Lemma 1: Traversing synchronization edges
◮ Transition from BSS[0] to end of BSS[1]
◮ Synchronization actually takes place

◮ Lemma 2: Sampling expected values
◮ Synchronization is good enough

◮ Proof Method
◮ CDC model: number of unknown inputs (systematic)
◮ Unknown inputs are assumptions for NuSMV (automatic)



Conclusion(1)

◮ General model of clock domain crossing
◮ Isabelle/HOL (Isar) theory (1,000 loc)
◮ Reusable for other proofs (e.g. scheduler)
◮ Fully parameterized

◮ Formal correctness proof of a hardware FlexRay-like interface
◮ First detailed gate-level proof: functionality + timing

∗ Valid values for crucial parameter

◮ Basis theorem for the verification of distributed stacks
◮ Theorem proving and automatic tools (like model checking)



Conclusion (2)

◮ Practical experience of hybrid verification
◮ Automatic tools were crucial
◮ Automatic tools must be extremely fast (seconds not minutes)
◮ Easy interaction with tactic based theorem prover

(Isabelle/Isar)
◮ Automatic tools are just new tactics

◮ Developing the model was the main effort
◮ Understanding of the details
◮ Deciding between wrong implementation or incomplete model
◮ Model can still be improved (spikes, faults)

◮ From the model the proof of the hardware is systematic
◮ General model: exactly where automatic tools apply
◮ From first proofs: systematic proof techniques
◮ Similar design verification effort would take few weeks
◮ ... but tedious: receiver proof > 8,000 loc



THANK YOU !!



Functional Correctness: Proof Overview

◮ Show counter-example for the following configuration
◮ Counter reset to 000
◮ Strobe at 100
◮ Strobing distance = 4 - 0 = 4

◮ FlexRay specifications
◮ Counter reset to 010
◮ Strobe at 101
◮ Strobing distance = 5 - 2 = 3

◮ Lemma 1: Traversing synchronization edges
◮ Transition from BSS[0] to end of BSS[1]
◮ Synchronization actually takes place

◮ Lemma 2: Sampling expected values
◮ Synchronization is good enough



Traversing Synchronization Edges

z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ outs = sender output, v = voted bit, z = receiver state
◮ Delay of 4 cycles from majority voting



Traversing Synchronization Edges

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ outs = sender output, v = voted bit, z = receiver state
◮ Delay of 4 cycles from majority voting
◮ Strobe at 100



Traversing Synchronization Edges

cnt = 011 cnt = 000 cnt = 100
sync

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ At t + 13, sync is high (falling edge detected)

◮ Counter cnt reset to 000

◮ Strobe at t + 18



Traversing Synchronization Edges

cnt = 011 cnt = 000 cnt = 100
sync

cnt = 100
z = BSS[0]
cnt = 101

0 0 ?0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

VotedVal

v

0 0 0 0 0 0 00

◮ At t + 13, sync is high (falling edge detected)

◮ Counter cnt reset to 000

◮ Strobe at t + 18

◮ Lemma 1:
◮ 15 to 18 cycles from t to second strobing point
◮ Assuming drift, jitter and metastability

◮ Proof by NuSMV and Isabelle/HOL
◮ CDC model: 1 or 2 unknown inputs (systematic)
◮ Unknown inputs are assumptions for NuSMV proof (automatic)



Sampling Good Values: Counter-Example

sync

cnt = 011 cnt = 000 cnt = 100

cnt = 100cnt = 100

cnt = 100
cnt = 101
z = BSS[0]

0 0 0 0 0 00

0 0 ?0

b b b b b b

0 0 0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

?

cy(t + 16, b[0])

b

VotedVal

b

v

b b b

b b b b b b ?

0



Sampling Good Values: Counter-Example

cnt = 100
sync

cnt = 011 cnt = 000

cnt = 100cnt = 100

cnt = 100
cnt = 101
z = BSS[0]

0 0 ?0

b b b b b b ?
One sample is missing
Slow receiver

b b b b b b

0 0 0

1 1 1 1 1 1 1 1

BSS[0]

Sender Ouput
outs

cy(t,BSS[0])

BSS[1]

cy(t + 8, BSS[1])

b b b

cy(t + 16, b[0])

1 1 1 1 1 1 ? 0 00
Majority voting

4 cycles

cy(t + 16, b[0])

b

VotedVal

b

v

b b b

0 0 0 0 0 0 00



Timing Correctness

...

idleν

slot0 slot1 . . . slotj slotn−1

roundi

tk tl

byteTSS FSS BSS BSS byte FES

80 · (m − 1) + 16 82 + 16 + ǫc

◮ Transmission correctness theorem:
◮ For all bytes b, there exists a receiver cycle ν from which b is

correctly sampled after 79 to 82 (receiver) cycles.
◮ Note: we have cy(ν, c + 80 · (m − 1) + 16)

◮ Timing theorem easily follows:
◮ Number of transmission cycles t = 32 + 80 · (m − 1) + 82 + ǫ
◮ Bound on maximum length of clock periods

τmax = (1 + δ) · τref

◮ Transmission time bounded by the following:

(32 + 80 · m + 2 + ǫ) · (1 + δ) · τref
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