
Response property checking via distributed state
space exploration
Brad Bingham and Mark Greenstreet

Department of Computer Science, University of British Columbia
201-2366 Main Mall, Vancouver, B.C., Canada, V6T 1Z4

{binghamb, mrg}@cs.ubc.ca

Abstract—A response property is a simple liveness property
that, given state predicates p and q, asserts “whenever a p-state
is visited, a q-state will be visited in the future”. This paper
presents an efficient and scalable implementation for explicit-
state model of checking response properties on systems with
strongly- and weakly-fair actions, using a network of machines.
Our approach is a novel twist on the One-Way-Catch-Them-
Young (OWCTY) algorithm. Although OWCTY has a worst-
case time complexity of O(n2m) where n is the number of states
of the model, and m is the number of fair actions, we show
that in practice, the run-time is a very small multiple of n.
This allows our approach to handle large models with a large
number of fairness constraints. Our implementation builds upon
PREACH, a distributed, explicit-state model checking tool. We
demonstrate the effectiveness of our approach by applying it to
several standard benchmarks on some real-world, proprietary,
architectural models. Index Terms—distributed model checking,
explicit-state model checking, murphi, liveness, fairness

I. INTRODUCTION

Response properties are liveness properties of the form
“From any state in which proposition p is satisfied, execution
will eventually reach a state in which proposition q is satis-
fied.” In LTL such properties are expressed as �(p→ ♦q); the
corresponding CTL specification is AG (p → AF q). Specifi-
cations of cache protocols and high-level architectural models
often include response properties – e.g. if a processor attempts
to write to a memory location, the processor will eventually
have an exclusive copy of that location in its cache; or, if an
instruction is fetched, eventually either it will be executed and
committed or that (speculative) path will be aborted.

The standard approach to explicit state model checking
of LTL properties involves constructing a product automaton
that is the synchronous cross product of the Büchi automaton
that accepts the negation of the property in question, and the
Büchi automaton for the system itself [1], [2]. If the language
accepted by the product automaton is empty, then the LTL
property holds; otherwise, a counterexample trace is found. All
model checking approaches are vulnerable to state-explosion
problems, and the product-automaton construction for LTL
model checking exacerbates this problem. If the original
system has n reachble states, and the LTL specification, φ,
consists of |φ| symbols and operators, then constructing the
product automaton takes O(n2|φ|) time and space.

This research was funded in part by generous support from NSERC Canada
and Intel through their CRD and URO grants.

Response properties can be expressed with a Büchi au-
tomaton with only 2 states, and thus the blowup from the
formula size is curbed. Unfortunately, only contrived systems
that contain no cycles along any path from a p-state to a q-
state will satisfy response. In practice, response is verified
subject to fairness assumptions that attempt to characterize
realistic traces. Response may be verified under those fair-
ness assumptions that can be written as the LTL formula
Fair , by using LTL model checking to verify the formula
Fair → �(p → ♦q). The Büchi automaton for this formula
will grow exponentially in |Fair |, which in turn causes the
number of states of the product automaton to explode.

Instead of expressing fairness as an antecedent to the LTL
property of interest, fairness can be expressed in terms of
how the original system is defined or as a specially handled
input to the model checking algorithm. Kesten et al. [3]
compare expressing fairness as a property antecedent with
a “fair-aware” approach and show that latter achieves better
performance. Manna and Pnueli [4], [5] present a model-
checking algorithm property checking for response properties
that takes advantage of two notions of action-based fairness.
The Divine distributed explicit-state model checking tool has a
specific mode where all transitions are assumed to be weakly
fair [6]. In this paper, we follow suit and employ an algorithm
that directly utilizes fairness assumptions for Manna and
Pneuli’s notions of strong and weak fairness. In the worst-case,
the algorithm could perform O(n2|Fair |) state expansions,
where n is the number of reachable system states. In the
typical scenario where |Fair | is much smaller than log(n),
this far exceeds the number of worst-case expansions of the
Büchi automaton approach which is O(n2|Fair |). However, our
results show on benchmark models that the algorithm vastly
outperforms the worst case, which is indeed achievable (see
online Appendix [7]). In contrast, Section VII reports results
for a tool that implements the Büchi automaton approach and
uses time and memory as one would expect from the worst-
case analysis.

Our contributions are as follows:
1) present a novel, efficient, parallel approach for model

checking response properties;
2) an implementation of the algorithm built as an extension

of the PREACH [8], [9] model checker. PREACH is a
distributed, explicit-state model checker based on Stern
and Dill’s [10] algorithm;

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 15

3) demonstrate that verifying liveness in large, realistic
systems augmented with both strong and weak fairness
is tractable using a modest network of machines;

4) show that the time requirements for One-Way-Catch-
Them-Young style algorithms are far better in practice
than would be expected from the worst case analysis. In
practice, we observe that each state is visited a small
number of times (typically less than 30).

II. OVERVIEW

Stern and Dill’s distributed model checking algorithm [10]
partitions the state space among processes with a uniform
random hash function. Processes are said to own states that
hash to their process IDs. Once a state has been visited,
its owner process is responsible for storing it locally. In
PREACH this is done with the Murϕ model checker’s hash
table [11] which uses a predetermined number of bits1 to
represent each state. The use of hash compaction and bloom
filters in explicit-state model checking is a thoroughly studied
area [12], [13] and lends itself to practical approaches. Hash
table compression admits a small probability that some state
will erroneously be viewed as visited when it actually hasn’t
been. In our experience this probability is tiny; for example, a
very large model checking experiment with about 100 billion
states had only a 0.03% chance of a missed state [8]. The
experiments in this paper admit a much smaller probability
than this; the German6 model with over 316 million states
had a probability of a missed state of less than 7.36× 10−5.
If this probability were of practical concern, the user could
simply re-run the tool using a different seed for randomization
and reduce the probability of a missed state in both runs to
less than (7.36× 10−5)2 < 5.42× 10−9.

Once a state has been checked in the hash table, HT, it
is queued for expansion in the work queue, WQ, the other
key data structure of the Stern-Dill algorithm. Unlike the HT
which has static size and resides in memory, the WQ has
dynamic size and stores full state descriptors. Typically only
a small percentage of the WQ is in memory; the rest is
delegated to disk. Because states can be read and written
in large batches, using disk storage for the WQ does not
create a bottleneck. A key feature to PREACH performance,
particularly in a heterogeneous computing environment, is load
balancing. Once a state enters WQ, it is irrelevant which
process actually checks the invariants, computes the successor
states and sends them off to their respective owners. Thus,
processes that amass a longer WQ will offload a chunk of
their states to another process with a shorter WQ.

Erlang’s message passing system relies on nonblocking
sends. When a message arrives for some process, it resides in a
message inbox in memory until a matching RECEIVE is called.
The dynamic nature of distributed state space exploration
and the performance asymmetry introduced by heterogeneous
machines, or any other performance irregularities, can lead to

1This number is a configuration parameter. The results in this paper use
the default value of 40 bits.

very long messages queues. This is especially problematic as
we have observed that the time it takes the Erlang runtime
to consume an inbox message increases with the number
of messages in the process’s inbox. To combat this issue,
PREACH employs a crediting mechanism that bounds the size
of each process’ inbox. If process A has states to send to their
owner, process B, but it does not have sufficient credits to
do so, the states are simply queued in A’s “outbox” for B.
Outboxes that grow large are also written to disk.

To check response properties, we have implemented an
algorithm inspired by the set-based One-Way-Catch-Them-
Young algorithm described in [14], [15]. We focus on systems
with both strongly fair actions (a.k.a. compassion), denoted C
and weakly fair actions (a.k.a. justice), denoted J .

A. Preliminaries

A fair transition system, FTS, is a tuple (S, I, T,J , C)
where
• S is a finite set of states;
• I ⊆ S is the set of initial states;
• transition relation T ⊆ S × S;
• weakly fair actions J ⊆ 2T ;
• strongly fair actions C ⊆ 2T .
An action is a subset of T . Function En : S → 2C∪J gives

the set of actions enabled at state s, i.e. En(s) = {a ∈ C∪J :
∃s′. (s, s′) ∈ a}. State s enables action a if a ∈ En(s). Given
state s we use the shorthand notations Cs and Js to refer to
the sets of enabled actions that are strongly and weakly fair,
respectively. Formally, Js = J ∩En(s) and Cs = C ∩En(s).
For convenience we assume transitions that are not members
of any element of J ∪ C are members of the non-fair set, i.e.
NF = T \(⋃a∈J∪C a). For A ⊆ S, 〈A〉 denotes the subgraph
of the digraph (S, T) induced by A.

A trace is a finite sequence of states s0 ◦ s1 ◦ . . .◦ sk where
so ∈ I , and (si, si+1) ∈ T for 0 ≤ i < k. A predecessor trace
for state s is any trace where sk = s.

An execution is an infinite sequence of states, s0 ◦ s1 ◦ . . .,
where s0 ∈ I , and ∀i ≥ 0. (si, si+1) ∈ T . For a given trace,
action a satisfies
• InfOftenTaken(a), if ∀i ≥ 0. ∃j ≥ i. (sj , sj+1) ∈ a,
• InfOftenEn(a), if ∀i ≥ 0. ∃j ≥ i. a ∈ En(sj), and
• InfOftenDisabled(a), if ∀i ≥ 0. ∃j ≥ i. a /∈ En(sj).

An execution is called fair if

∀a ∈ C. InfOftenEn(a)⇒ InfOftenTaken(a)
∧ ∀a ∈ J . InfOftenTaken(a) ∨ InfOftenDisabled(a).

In other words, an execution is fair if all actions of C are
taken infinitely often or are never enabled beyond some finite
prefix of the execution, and all actions of J are taken infinitely
often or are disabled infinitely often. A strongly connected
component (SCC) is called fair (a FSCC) if all enabled
strongly fair actions in the SCC’s states are taken within the
SCC, and all enabled weakly fair actions in the SCCs states
are either taken within the SCC or disabled at some state.
Section III presents an algorithm that detects FSCCs within

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 16

the subgraph of reachable states that can be reached on a path
from some p-state without visiting a q-state along the way (this
subset is referred to as pending; see Figure 1). Such SCCs
are counterexamples to the response property �(p → ♦q);
furthermore, every counterexample execution has an infinite
suffix that only visits states in a FSCC. Note that p is a subset
of pending , and q is disjoint with pending . The initial states
are usually disjoint from both p and pending , but this need
not be the case.

reachable

init
p

q

pending

Fig. 1: Sets of interest when checking a system adheres to
�(p→ ♦q).

B. A note about stuttering
We note that fair systems may be defined with or without

inherent stuttering, the former assuming that every state has a
transition to itself and the latter does not. For simplicity in the
following presentation, we assume that stuttering is allowed,
thereby requiring a fair “reason” why indefinite stuttering
cannot occur. This assumption requires that T is reflexive.
Including stuttering simplifies the presentation; for example,
it ensures that all traces can be extended to infinite executions.

III. ALGORITHM

Our distributed response checking algorithm is based on
the One-Way-Catch-Them-Young (OWCTY) [14] approach.
The key idea of the algorithm is to begin by initializing a
set, MaybeFair , with the pending states, and then iteratively
remove states from MaybeFair that cannot belong to a FSCC.
A state, s, is removed when it is discovered that there is no
predecessor trace of s in 〈MaybeFair〉 along which action
a ∈ C is taken, where a ∈ Cs. Similarly, s is removed
if it is found that there is no predecessor trace of s in
〈MaybeFair〉 along which action a ∈ Js is either taken
or disabled at some state s′ of the trace, where a ∈ Js.
The response property holds iff MaybeFair is empty when
the algorithm terminates. To see this, note that any state
that is removed from MaybeFair cannot belong to a FSCC;
thus, 〈MaybeFair〉 contains all of the FSCCs of 〈pending〉.
The FSCCs of 〈MaybeFair〉 form a DAG. Let F be any
FSCC of 〈MaybeFair〉 that has no predecessor FSCCs. It
is straightforward to construct a cycle in F that satisfies all
fairness constraints. By construction, this cycle is reachable
from some initial state.

The description of OWCTY from [15] for model checking
LTL formulas with strong and weak state-based fairness oper-
ates on sets of states performing union and disjunction opera-
tions, as well as deleting all members from a set which have

Algorithm 1 High level algorithm
1 procedure FINDFAIRCYCLE(S, I, T, C,J , p, q)
2 . Compute the pending states
3 pending ← REACHABILITY(S, I, T, p, q)
4 ptfa ← new bit [pending][J ∪ C] . array of bit-strings
5 CLEAR(ptfa) . initialize to all 0s
6 MaybeFair ← pending
7 Prev ← ∅
8 while MaybeFair 6= Prev do
9 Prev ← MaybeFair

10 ToExpand ← MaybeFair
11 while ToExpand 6= ∅ do
12 s← REMOVESOMEELEMENT(ToExpand)
13 . Weakly fair actions not enabled at s
14 for all a ∈ J \ Js do
15 ptfa[s][a]← 1
16 end for
17 Next← SUCCESSORS(s) \ q
18 for all s′ ∈ Next do
19 OldActions ← ptfa[s′]
20 a← WHATACTIONTAKEN(s, s′)
21 if a ∈ J ∪ C then
22 ptfa[s′][a]← 1 . Record action taken
23 end if
24 . Actions preceeding s also preceed s′
25 ptfa[s′]← BITWISEOR(ptfa[s], ptfa[s′])
26 if (ptfa[s′] 6= OldActions) then
27 ToExpand ← ToExpand ∪ {s′}
28 end if
29 end for
30 end while
31 for all s ∈ MaybeFair do
32 if ∃a ∈ Js ∪ Cs : ptfa[s][a] = 0 then
33 MaybeFair ← MaybeFair − {s}
34 end if
35 end for
36 CLEAR(ptfa)
37 end while
38 return MaybeFair 6= ∅
39 end procedure

no predecessor within the set until a fixed point is reached2.
As described in Section II, PREACH uses lossy compression
when hashing states; thus, we cannot reconstruct states from
hashtable entries. To retain the efficiency advantages of the
Murϕ hashtables, we avoid the explicit representation of large
sets of states, and replace the union and intersection operations
of OWCTY with tag bit manipulations, where each hash table
entry includes one such tag bit per fair action. In Algorithm 1,
these bits are stored in ptfa (predecessor trace fair actions),
which is a two-dimensional array of bits initialized to all
0s. Bit ptfa[s][a] is set for action a ∈ J ∪ C and state
s ∈ MaybeFair is set if a is taken in a predecessor trace
of s in 〈MaybeFair〉, or if b ∈ J is disabled at some state
of a predecessor trace of s in 〈MaybeFair〉. The set pending
stores the states of interest for response, those that can be
reached on a path from a p-state without visiting a q-state.

Each iteration of the outer while-loop is called a round, and
involves two phases.
Action Propagation Phase (AP):
This step is the while-loop from lines 11 to 30. Some state s
is removed from ToExpand and the tag bits are set for each

2To the best of our knowledge, the algorithm from [15] not been imple-
mented.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 17

weakly fair action that is disabled at s; this is because any
eventual successor of s within 〈pending〉 may be part of an
SCC with s. If so, this SCC is fair with respect to these weakly
fair actions. Then, the successors of s within 〈pending〉 are
computed. For each of these the current tag bits are saved in
OldActions . If the transition that is taken from s to reach a
successor s′ is a member of some a ∈ J ∪ C, the ptfa[s′][a]
is set (line 22). Then, the bit-string ptfa[s] is ORed with the
ptfa[s′], as any predecessor trace ρ for s implies a predecessor
trace for s′, namely ρ ◦ s′. If any of these operations have set
new bits for s′, it must be added to ToExpand so the bits are
propagated along. Otherwise, the s′ is discarded. This loop
continues until a fixed point is reached for the contents of
ptfa .

Figure 2 illustrates some operations of AP with an ex-
ample. For this example, J = {a0, a1, a2, a3} and C =
{a4, a5, a6, a7}, and PTFAs are represented as a7 . . . a0, as
seen below each state. Assume that En(b) = {a0, a2, a3, a4},
En(c) = {a0, a1, a7}, and En(d) = {a0, a1, a3, a5}. When
b is expanded, the PTFA on the arc is passed to state e
which changes the PTFA for e and requires e to be expanded.
Subsequently, c is expanded and the PTFA for e is again
updated and another e expansion is needed to communication
the new PTFA to successors. Finally, when d is expanded the
PTFA sent to e contains no new actions, so e does not need
another expansion.

c

d

e

b

{a2, a7}

{a2, a3, a5, a7}

{a1,
a2,

a7}

{a
1 , a

4 , a
5}

a7 taken

a
4 taken

{a2, a3, a5, a7}

{a1, a5}

a1
tak

en {a1, a4, a5}
{a1, a2, a3, a4, a5, a7}

∅

Fig. 2: Example of PTFA updates as states are expanded.

State Deletion Phase (SD):
This phase appears from lines 31 to 36. Any states that enabled
a fair action a but with the corresponding tag bit cleared cannot
be part of a FSCC and are removed from MaybeFair .

Soundness for the algorithm was described at the beginning
of this section. To see that the algorithm terminates, we first
note that the while loop at lines 10–28 must terminate because
the flag bits in ptfa are strictly increasing with successive
iterations of the loop. The while-loop at lines 7–35 terminates
because the loop adds no new elements to MaybeFair .

IV. DISTRIBUTED IMPLEMENTATION

The distributed version of this algorithm starts with a Stern-
Dill style reachability computation that identifies all p and
pending states. Each worker process stores its p states on disk,

and pending states are marked with tag bits in the hash-table.
Initially, the PTFA for pending states are set to all fair actions,
J ∪ C. The distributed algorithm then performs rounds that
correspond to those of the sequential version, Algorithm 1. As
described in more detail below, each round propagates PTFA
tags according to the next state relation until a fix point is
reached. At the boundary between rounds, states are identified
whose PTFAs do not satisfy the fairness constraints for the
state. Such states cannot be part of an FSCC and are marked
as “dead” (i.e, removed from MaybeFair). The number of live,
MaybeFair states is non-increasing. The algorithm terminates
when this number no-longer decreases. If at this point, all
MaybeFair states have been eliminated, then the response
property is satisfied. Otherwise, counter-example is generated.
The remainder of this section describes this algorithm in more
detail.

Algorithm 2 shows pseudo-code for the root process. It
initiates the initial reachability computation to identify p and
pending states. It then initiates rounds of propagating PTFA
tags and eliminating pending states until no further states
can be eliminated. The termination detection algorithm from
the original Stern and Dill approach is used to identify the
end of each round and compute the total number of pending
states. This provides a barrier separating the computations
of successive rounds. After the final round, the root process
notifies the workers that the computation is complete and
reports either that the response property has been verified or
provides a counter-example.

Algorithm 3 shows pseudo-code for the worker processes.
Like the reachability computation, each worker has two main
activities: receiving incoming states and checking if they have
been “seen” previously, and expanding states to send their suc-
cessors to their owners. Algorithm 3 augments each of these
activities to maintain the tags for PTFAs. At the beginning
of each round, each process checks its subset of the p states
to determine which ones satisfied their associated fairness
constraints in the previous round. Those that don’t are marked
as dead. All p-states are added to the work-queue, ToExpand ,
even if they are dead to ensure that their successors are
examined in this round. When a state is received, the algorithm
first checks to see if this is the first time the state has been
seen for the current round. If so, the state’s PTFA is checked
to see if the state should be marked as dead, and all states are
entered into ToExpand the first time they are visited in each
round. If the state has been seen before, then if the new PTFA
indicates incoming paths for fairness constraints that haven’t
already been satisfied, these constraints are added to the state’s
PTFA, and the state is enqueued in ToExpand to propagate
this information to its successors.

When a worker removes a state from its work queue,
ToExpand , it computes all successor states as in the original
reachability algorithm. Because the incoming paths to this
state are prefixes of incoming paths for its successors, the
PTFA of the successor must contain the PTFA for this state.
Furthermore, if the transition to the new state corresponds to
a fair action, then this action is added to the PTFA. These

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 18

updates are made to the PTFA for the successor, and the
successor with this PTFA set is sent to the successor’s owner.

Every operation either marks a state a dead or adds a fair
action to some state’s PTFA. Thus, the activities for updating
fairness information eventually reach a fixpoint and the round
terminates. Many optimizations are possible to improve the
performance of this algorithm. These are described in the next
section.

Algorithm 2 Root Process
1 function ROOTSTART(I, p, q)
2 . Tags for initial states
3 for all s ∈ I do
4 SENDSTATE((s, ∅))
5 end for
6 CurMaybeFairCount ← TALLY(nstates)
7 PrevMaybeFairCount ← CurMaybeFairCount+ 1
8 while CurMaybeFairCount 6= PrevMaybeFairCount do
9 BROADCAST(doRound)

10 PrevMaybeFairCount ← CurMaybeFairCount
11 CurMaybeFairCount ← TALLY(nstates)
12 end while
13 BROADCAST(stop)
14 if CurStates > 0 then
15 return GENERATECOUNTEREXAMPLETRACE(. . .)
16 else
17 return verified
18 end if
19 end function

V. OPTIMIZATIONS

Early experiments with a prototype implementation revealed
several opportunities to improve performance. We aim to
address the average number of state expansions during a phase,
the number of states visited during a phase, and the number
of rounds. A key observation is that for many examples, the
number of states in the pending set decreases rapidly with
successive rounds. Thus, it is important to avoid touching
“dead” states so that the work done in later rounds decreases
with the smaller size of pending . This also means that most
of the time is spent in the initial reachability computation
and the first two or three rounds of the liveness computa-
tion. Thus, optimization should focus on these early rounds.
Furthermore, the same state can be updated several times
during a single round. Consolidating these updates was simple
and led to significant performance gains. The remainder of
this section presents three methods of reducing each of these
metrics in turn. In addition, various optimizations are inherited
from PREACH’s state space exploration technique. Namely,
load balancing of states offers modest speedups even in a
homogeneous network of machines. Batching of states into
messages containing hundreds or thousands is also of benefit.
The reader may consult [8] for details.

A. Saved Expansions

The description in the algorithms and implementations
presented so far have states paired with their tags, including
PTFAs, when enqueued to the WQ. When the WQ grows
large, state s may arrive tagged with PTFA b2 while the same

Algorithm 3 Worker Process
1 function WORKER(S, I, T,J , C, p, q, rootPid)
2 PS← COMPUTEPSTATES(S, I, T,J , C, p, q)

. Global variable queue that stores p-states
3 RoundCount ← 0
4 while true do
5 case RECEIVE() of . Blocking receive
6 doRound → ok
7 stop → break while loop
8 end case
9 RoundCount ← RoundCount + 1

10 for all s ∈ PS do
11 WQ← INITSTATEFORROUND(s, ∅,RoundCount)
12 end for
13 . Stern and Dill’s termination alg
14 while round not terminated do
15 while (s, thisPTFA)← RECEIVE() do . Nonblk. recv
16 T ← HT.GETTAGS(s)
17 if T.round 6= RoundCount then
18 INITSTATEFORROUND(s, thisPTFA,RoundCount)
19 else if ¬T.dead ∧ (thisPTFA * T.PTFA) then
20 T.PTFA← T.PTFA ∪ thisPTFA
21 WQ.INSERT((s, T))
22 HT.UPDATETAGS(s, T)
23 end if
24 end while
25 EXPANDANDSEND(J , C) . See Alg. 4
26 end while
27 send (nstates,MyMaybeFairCount) to rootPid
28 end while
29 end function
30
31 function INITSTATEFORROUND(s, thisPTFA,RoundCount)
32 T ← HT.GETTAGS(s)
33 if ENABLED(s) * T.PTFA then
34 T.dead ← true
35 thisPTFA← ∅
36 end if
37 T.round ← RoundCount
38 T.PTFA← thisPTFA
39 WQ.INSERT((s, T))
40 HT.UPDATETAGS(s, T)
41 end function

state is waiting for expansion in the WQ while paired with
PTFA b1, which matches the PTFA at the HT entry for s.
When b2 has at least one bit set that b1 does not, s is enqueued
for expansion in WQ paired with PTFA b1 ∪ b2. This renders
the earlier WQ entry of (s, b1) redundant and unnecessary.

To avoid this scenario, the HT is used to maintain PTFA
information, and WQ entries do not contain a PTFA. When a
state s is enqueued, a new HT tag bit InWQ is set; when s
is dequeued, InWQ is cleared and the current HT value for
PTFA is used when computing the PTFA for s’s successors. If
state s with PTFA b2 arrives when the HT entry has InWQ
set, then HT PTFA bHT is set to bHT∪b2 and the just-arrived
state s is discarded. This approach reduces the number of state
expansions at the cost of an additional bit in HT per state,
and one additional HT lookup.

B. Dynamic Kernel

The algorithm implementation above uses the reachable p-
states as the kernel, defined as follows.

Definition 1: Given a FTS, K ⊆ S is a kernel for A ⊆ S
if A is a subset of the reachable states from K in the digraph

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 19

Algorithm 4 Dequeues a WQ state and sends next states
with tags to their owners.

1 function EXPANDANDSEND(J , C)
2 if ISEMPTY(WQ) then
3 return done
4 end if
5 (X,Tags)← DEQUEUE(WQ)
6 NextStates ← COMPUTESUCCESSORS(X)
7 if Tags.dead then
8 for all s′ ∈ NextStates do
9 SENDSTATE((s′, ∅))

10 end for
11 return
12 end if
13 PTFA← Tags.PTFA
14 PTFA← PTFA ∪ (J − ENABLED(X))
15 for all s′ ∈ NextStates do
16 ActionTaken ← WHATACTIONTAKEN(X, s′)

. Successor PTFA is current state PTFA with the fair action taken
17 if ActionTaken ∈ NF then
18 NextPTFA← PTFA
19 else
20 NextPTFA← PTFA ∪ActionTaken
21 end if
22 SENDSTATE((s′,NextPTFA))
23 end for
24 return
25 end function

(S, T).
Note that the initial states I is a kernel for any subset of

the reachable states. In the code presented in Section IV, we
used the reachable p-states Kp as a kernel for MaybeFair to
initiate each phase because Kp is a kernel for every subset of
pending . Our experiments showed that for typical examples,
the number of states in MaybeFair drops rapidly with each
SD phase. The expansion of such deleted states can be avoided
by modifying K after each SD phase, using an extra HT tag
bit InK and additional disk space.

During the initial phase, only the p-states have InK set to
true, and these states are saved to disk in the kernel-queue.
When a state s is removed from MaybeFair during SD that
has InK set, this flag is cleared. When a process receives state
s′ tagged with mode delete pred (signaling that a predecessor
of s′ has just been removed from MaybeFair), then if s′ has its
InK flag cleared, it is set to true and s′ is added to the kernel-
queue. Finally, at the start of an AP phase the kernel-queue is
copied to the WQ to serve as the set of initial states, but any
state encountered that has its InK flag cleared is ignored and
removed from the kernel-queue.

While this approach does not necessarily maintain the small-
est possible kernel for MaybeFair , its simple implementation
and low overhead lead to large performance gains.

C. Deletion by Predecessor Counting

There are performance advantages when storing the number
of predecessors each state has in 〈MaybeFair〉. Under the
assumption of stuttering and ensuring the safety property
that every state s ∈ pending has |Js ∪ Cs| ≥ 1, any
state with 0 predecessors in 〈MaybeFair〉 will be deleted
from MaybeFair in the next SD phase. However, storing the

number of predecessors in HT allows detection of this case
in order to preemptively remove such states. We choose to
add 8 bits to the HT tags to store the predecessor count.
This additional bookkeeping complicates Algorithms 3 and
4 somewhat (details omitted). In particular, a state may be
expanded more than once during an SD. This occurs when
the first time a state is visited the condition on line 33 of
Algorithm 3 holds, but subsequently all of its predecessors
are deleted. However, this turns out to be a rare occurrence in
the benchmarks, and this strategy can reduce the number of
phases. Note that the impact of this optimization is omitted
from the Results section as it was inherent to our early
implementation versions.

VI. RESULTS

We ran PREACH on a variety of combinations of Murϕ
models with all optimizations of section V enabled, summa-
rized in Table I. For each, we chose a suitable response prop-
erty such as “requests for exclusive access to a cache line are
eventually granted”, or “processes waiting to enter the critical
section will eventually do so”. The Murϕ models used are the
German cache coherence protocol, the Peterson mutual exclu-
sion algorithm, the MCS lock mutual exclusion algorithm, a
snoopy protocol used as a benchmark in previous verification
work [16] and an Intel proprietary protocol. Let GermanX
denote the German model with X caches; petersonY is
Peterson’s algorithm with Y processes and mcslock5 is
the MCS Lock algorithm with 5 processes; snoop2 is the
snoopy protocol with 2 L1 caches and 2 clusters. Models saw,
gbn and swp are various sliding window communication
protocols, with the response property that the sender can
always eventually accept new data to transmit. All models and
the PREACH code is provided online [7]. Each Murϕ “rule”
(a.k.a. guarded command) is considered a separate action; we
attached suitable fairness assumptions specific to the model.
The network of machines used for experiments are as follows:
• UBC cluster: 40 PREACH processes on a homogeneous

cluster of 20 Intel Core i7-2600K at 3.40 GHz with 8 GB
of memory (non-intel_* models).

• Intel cluster: 16 PREACH processes on a heterogeneous
network of contemporary Intel R© Xeon R© machines, each
with at least 8 GB of memory (intel_* models).

Not included in the table, but worth noting, is an Intel
proprietary sliding window protocol model. With over 450
million states and tens of fairness (both strong and weak),
we were able to verify response in about 5 and a half hours
using 32 cores.

A few modifications were required when checking the
snoop protocol. This model was created to represent a
cache-coherence protocol in a realistic processor. The protocol
appears to have been designed with an emphasis on safety, and
liveness does not appear to have been primary concern. For
example, requests for cache lines are clearly not responsive
as they may be negatively acknowledged (Nackd) an arbitrary
number of times. To avoid this, we changed the protocol so
that Nacks of this type are simply ignored, and the request

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 20

model runtime states p-states pending-states q-states rounds exp/state no -ko no -se no opt.
German5_sf 189 15,836,445 3,699,486 4,858,596 5,103 1 3.48 0.98 2.42 2.86
German6_sf 4,253 316,542,087 74,465,244 95,266,520 18,225 1 3.33 1.01 3.30 3.52
peterson6_wf 820 13,817,679 2,947,800 12,111,713 45,209 14 12.91 1.65 1.30 1.95
peterson6_sf 423 13,817,679 2,947,800 12,111,713 45,209 5 9.03 1.36 1.73 2.12
peterson7_wf 26,957 380,268,668 79,029,594 340,549,743 775,138 17 14.19 1.65 1.66 2.16
peterson7_sf 14,613 380,268,668 79,029,594 340,549,743 775,138 6 10.11 1.27 2.26 -
mcslock5_wf 1415 59,318,541 27,785,789 51,474,427 2,780,517 3 5.09 1.17 1.10 1.25
snoop2_sf 160 2,648,763 670,689 1,313,100 1,335,663 3 12.71 1.07 4.57 5.00
saw20_sf 323 314,183 309,140 309,140 5,043 23 44.06 1.04 1.09 1.15
gbn3_2_sf 369 12,753,395 7,859,200 7,859,200 4894195 6 6.44 1.60 1.95 2.56
swp4_2_sf 503 18,595,425 11,715,440 11,715,440 6,879,985 6 6.58 1.59 1.63 2.22
intel_small_sf 285 476,778 268,078 268,078 164,057 4 6.36 - - -
intel_med_sf 1,015 2,696,059 1,944,360 1,944,360 635,672 4 8.59 - - -
intel_big_sf 13,872 51,791,350 29,899,694 29,899,694 19,855,989 8 11.92 - - -

TABLE I: Column “runtime” is given in seconds; “exp/state” is the average number of times each pending-state was expanded. Model peterson6_sf
is peterson6 with all actions strongly fair, as opposed to peterson6_wf where some rules were weakly fair and the rest as not fair (for example, the
rule that initiates the move from the noncritical section to requesting to enter the critical section needs no fairness assumption). These two models have the
same number of states of each type but perform a different number of expansions, and illustrate the benefit of only using more fairness than required for the
response property to hold. All other models require strong fairness.

persists. This turned out to also not be responsive, although
less obviously so – the counterexample trace included 72
transitions. Therefore, not all of the pending states were
deleted. Online Appendix [7] Figure 5 shows that about half of
the the pending-states remained in the MaybeFair set when
the algorithm terminated. Additional plots for the experiments
appear in the Appendix.

The rightmost three columns of Table I show the slowdown
when benchmarks are run without the kernel optimization,
without the saved expansions optimization and without either,
respectively. The kernel optimization is of most benefit when
the number of rounds is large3. In particular, it is of no benefit
for those benchmarks that only require a single round, as the
kernel states are only used during subsequent rounds. The
saved expansion optimization offers large performance gains
in many cases. Typically, only 5 to 10% of the total state
expansions are explicitly avoided by the when a just-received
state state is present in the WQ. However, avoiding these
redundant expansions can in turn save many expansions of
successor states which in turn saves expansions of states that
are two transitions away. This cascading effect decreases the
total number of expansions by a significant factor.

VII. RELATED WORK

Divine is a parallel and distributed LTL model checker that
is the closest tool to ours [17]. Divine constructs a product
Büchi automaton to check liveness properties; thus, Divine’s
space requirement grows as the product of the number of
states in the system model and the number in the system
automaton. Applying Divine to the examples from Section VI,
we observed that it ran out of memory for all examples
except for those with no or a small number of strong fairness
constraints. Divine provides a mode for models where all
transitions are weakly fair. Using this feature, Divine per-
formed well for the Peterson example for which weak fairness
constraints are sufficient to ensure responsiveness. However,

3One exception is saw_20_sf where a large proportion of the runtime is
spent coordinating threads between rounds.

many problems require strong fairness; for example cache
coherence protocols often include states where taking one
action disables another. We found that for an encoding of the
German protocol with 4 caches, the reachable state space of
Divine’s product automaton doubled with each additional fair
action included. For only 6 fair rules, Divine on a multicore
machine took 17 minutes to construct the system automata,
13 minutes to perform the model checking task and used over
16 GB of main memory. In our experiments, adding one more
fair rule exhausted the main memory of our 32 GB machine
and rendered the computation time infeasible.

Our algorithm has a worst-case time complexity that is at
least O(n3) where n is the number of reachable states – it is
straightforward to construct an example where the transition
relation has O(n2) edges, and for which Algorithm 1 removes
one state per iteration of the outer while-loop. In practice, we
observe that the transition relation is sparse and Algorithm 1
converges in far fewer then n rounds – the most extreme case
in Table I has 23 rounds. The worst-case time complexity of
Divine is better, O(n2|φ|) – Divine replaces a factor of the
system model size with the number of states for the checking
Büchi automaton. However, our experiments show that the
actual time and memory requirements for Divine’s algorithm
are fairly close to what one would expect from the worst-case
bounds, while our approach, in practice, scales much more
efficiently. We see this gap between worst-case and actual
performance as a promising area for further investigation.

Using a sequential algorithm for accepting cycle detection
such as Tarjan’s [18], SCCs may be found in O(|V | + |E|)
time. However, such DFS-based algorithms are unsuited to
parallelization unless P = NC [19]. Manna and Pnueli
presented sequential algorithm for model checking response
properties of fair transitions systems [5], but this is not easily
parallelizable and so scalability is limited. Recently, Holzmann
implemented some interesting liveness checking algorithms in
a multicore version of SPIN [20]; however this approach will
only find counterexamples of bounded length. Other work
related to ours includes that of the authors of the LTSMin

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 21

model checking tool, most notably their algorithms for parallel
SCC decomposition on multicore machines [21], [22].

VIII. CONCLUSIONS AND FUTURE WORK

We have extended the PREACH explicit-state, distributed
model-checking tool to support verification of response prop-
erties under both strong and weak fairness of actions. Our
approach uses multiple rounds of reachability computation to
implement a variation of the OWCTY algorithm. For a model
with n states, m fairness constraints, OWCTY could expand
states O(nm) times on average. This would be prohibitively
expensive. Our implementation shows that for practical ex-
amples, the number of rounds is small – typically less than
30, with a maximum of about 44. Thus, OWCTY appears to
provide a practical approach to checking response properties
for real-world problems. For these examples, liveness checking
is slower than safety checking, but not prohibitively so.

Implementing our algorithm on top of the PREACH dis-
tributed model checker allows it to exploit the aggregate
memory of large compute clusters. This enabled verification
of response properties for a sliding-window protocol with over
450 million states in about 5 1

2 hours.
We compared our approach with a tool that uses the standard

product-automaton formulation, with one automaton for the
system model, and the other for the LTL liveness property. As
predicted by the worst-case analysis, we observed that the size
of the property automaton grew exponentially with the number
of fairness constraints. The product-automaton approach was
significantly faster than PREACH for the problems that it could
complete. However, it ran out of memory for all but the
smallest examples.

This approach can be generalized in a number of directions.
One is to handle other simple liveness properties such as
reactivity, expressed in LTL as �♦p ∨ ♦�q, where p and q
are past formulas. We hope to combine these model checking
methods with the decompositional inference rules of Manna
and Pnueli [4], [5]. Such decompositions establish that a
response property is implied by a handful of safety properties
and “smaller” response properties, i.e. depending on a smaller
fraction of the state space. Adapting our algorithm to verify
multiple such response properties in the same model checking
run would leverage human insight to increase performance.

ACKNOWLEDGMENTS

The authors extend their gratitude to Jiřı́ Barnat for his help
in understanding and running Divine. They also appreciate
assistance from colleagues Jesse Bingham and Jim Grundy at
Intel for providing examples of architectural models during
the first author’s internship, and Flemming Andersen for his
vision and support for developing and demonstrating scalable
verification methods and tools.

REFERENCES

[1] M. Y. Vardi and P. Wolper, “An automata-theoretic approach to automatic
program verification,” in Proceedings of the 1st Annual Symposium on
Logic in Computer Science (LICS’86). IEEE Comp. Soc. Press, Jun.
1986, pp. 332–344.

[2] R. Gerth, D. Peled, M. Y. Vardi, R. Gerth, D. D. Eindhoven, D. Peled,
M. Y. Vardi, and P. Wolper, “Simple on-the-fly automatic verification
of linear temporal logic,” in In Protocol Specification Testing and
Verification. Chapman & Hall, 1995, pp. 3–18.

[3] Y. Kesten, A. Pnueli, L.-O. Raviv, and E. Shahar, “Model checking
with strong fairness,” Form. Methods Syst. Des., vol. 28, pp. 57–84,
January 2006. [Online]. Available: http://portal.acm.org/citation.cfm?
id=1116046.1116050

[4] Z. Manna and A. Pnueli, “Completing the temporal picture,” Theor.
Comput. Sci., vol. 83, pp. 97–130, June 1991. [Online]. Available:
http://portal.acm.org/citation.cfm?id=111775.111780

[5] ——, “Temporal verification of reactive systems: Progress (draft),” http:
//theory.stanford.edu/∼zm/tvors3.html, 1996.

[6] J. Barnat, J. Havlı́ček, and P. Ročkai, “Distributed LTL Model Checking
with Hash Compaction,” Electr. Notes Theor. Comput. Sci., vol. 296,
pp. 79–93, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.
2013.07.006

[7] B. Bingham, “Preach-response,” https://bitbucket.org/binghamb/
preach-response, 2013.

[8] B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh,
and M. Reitblatt, “Industrial strength distributed explicit state model
checking,” in Parallel and Distributed Model Checking, 2010.

[9] J. Bingham, J. Erickson, B. Bingham, and F. M. de Paula, “Open-source
PREACH,” http://bitbucket.org/jderick/preach, 2013.

[10] U. Stern and D. L. Dill, “Parallelizing the murphi verifier,” Formal
Methods in System Design, vol. 18, no. 2, pp. 117–129, 2001.

[11] ——, “Improved probabilistic verification by hash compaction,” in
Correct Hardware Design and Verification Methods, IFIP WG 10.5
Advanced Research Working Conference, CHARME ’95, 1995, pp. 206–
224.

[12] P. Wolper and D. Leroy, “Reliable hashing without collision detection,”
in IN COMPUTER AIDED VERIFICATION. 5TH INTERNATIONAL
CONFERENCE. Springer-Verlag, 1993, pp. 59–70.

[13] P. C. Dillinger and P. Manolios, “Bloom filters in probabilistic verifica-
tion,” in Formal Methods in Computer-Aided Design. Springer, 2004,
pp. 367–381.

[14] Y. Kesten, A. Pnueli, and L. on Raviv, “Algorithmic verification of linear
temporal logic specifications,” in Proc. 25th Int. Colloq. Aut. Lang.
Prog., volume 1443 of Lect. Notes in Comp. Sci. Springer-Verlag,
1998, pp. 1–16.

[15] I. Černá and R. Pelánek, “Distributed explicit fair cycle detection,” in
Proc. SPIN workshop, ser. LNCS, vol. 2648. Springer, 2003, pp. 49–74.

[16] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T. Chou,
“Hierarchical cache coherence protocol verification one level at a time
through assume guarantee,” in High Level Design Validation and Test
Workshop, 2007. HLVDT 2007. IEEE International, 2007, pp. 107–114.

[17] J. Barnat, L. Brim, V. Havel, J. Havlı́ček, J. Kriho, M. Lenčo, P. Ročkai,
V. Štill, and J. Weiser, “DiVinE 3.0 – An Explicit-State Model Checker
for Multithreaded C & C++ Programs,” in Computer Aided Verification
(CAV 2013), ser. LNCS, vol. 8044. Springer, 2013, pp. 863–868.

[18] R. E. Tarjan, “Depth-first search and linear graph algorithms,” Siam
Journal on Computing, vol. 1, pp. 146–160, 1972.

[19] J. Barnat, L. Brim, and P. Ročkai, “A Time-Optimal On-the-Fly Parallel
Algorithm for Model Checking of Weak LTL Properties,” in Formal
Methods and Software Engineering (ICFEM 2009), ser. LNCS, vol.
5885. Springer, 2009, pp. 407–425.

[20] G. J. Holzmann, “Parallelizing the spin model checker,” in Proceedings
of the 19th international conference on Model Checking Software, ser.
SPIN’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp. 155–171.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-31759-0 12

[21] A. W. Laarman, R. Langerak, J. C. van de Pol, M. Weber, and
A. Wijs, “Multi-core nested depth-first search,” in Proceedings of the
9th International Symposium on Automated Technology for Verification
and Analysis, ATVA 2011, Tapei, Taiwan, ser. Lecture Notes in Computer
Science, vol. 6996. London: Springer Verlag, July 2011, pp. 321–335.

[22] S. Evangelista, A. W. Laarman, L. Petrucci, and J. C. van de Pol,
“Improved multi-core nested depth-first search,” in Proceedings of the
10th International Symposium on Automated Technology for Verification
and Analysis, ATVA 2012, Thiruvananthapuram (Trivandrum), Kerala,
ser. Lecture Notes in Computer Science, vol. 7561. London: Springer
Verlag, October 2012, pp. 269–283.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 22

