
Synthesis of Synchronization using Uninterpreted
Functions

Roderick Bloem, Georg Hofferek, Bettina Könighofer,
Robert Könighofer, Simon Außerlechner, and Raphael Spörk

Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Austria.

Abstract—Correctness of a program with respect to concur-
rency is often hard to achieve, but easy to specify: the concur-
rent program should produce the same results as a sequential
reference version. We show how to automatically insert small
atomic sections into a program to ensure correctness with respect
to this implicit specification. Using techniques from bounded
software model checking, we transform the program into an SMT
formula that becomes unsatisfiable when we add correct atomic
sections. By using uninterpreted functions to abstract data-
related computational details, we make our approach applicable
to programs with very complex computations, e.g., cryptographic
algorithms. Our method starts with an empty set of atomic
sections, and, based on counterexamples obtained from the
SMT solver, refines the program by adding new atomic sections
until correctness is achieved. We compare two different such
refinement methods and provide experimental results, including
Linux kernel modules where we successfully fix race conditions.

I. INTRODUCTION

Concurrency-related bugs form a serious problem in soft-
ware development. First, concurrent programs are hard to get
right due to the large number of possible interleavings of
threads. Second, concurrency issues are difficult to detect and
to reproduce: faults may only appear in rare cases that are
never hit by tests but only in operation. Third, even if detected
and reproducible, concurrency errors are difficult to fix. There
is the danger of fixing only some but not all symptoms, or
even introducing new errors. At the same time, the desired
behavior of a concurrent program is typically easy to specify:
it should behave as if executed sequentially. This important
property is called serializability, meaning that any concurrent
execution must behave as if all threads were executed one
after the other (in some order). In this paper, we present
methods to synthesize efficient synchronization in form of
atomic sections to ensure serializability. Assertions can be used
as an additional (or alternative) specification. Thus, on a high
abstraction level, we address the same problem as [7, 24].

Adequate abstraction is a key factor in making synthesis of
synchronization tractable. Our intuition is that synchronization
usually should not depend on the semantics of data opera-
tions. Thus, we propose to use abstract data operations by
means of uninterpreted functions. This is done by replacing
all arithmetic operations as well as calls to functions with-
out side-effects by uninterpreted functions during program

This research was supported by the Austrian Science Fund (FWF) through
projects RiSE (S11406-N23) and QUAINT (I774-N23).

analysis. This speeds up the synthesis process significantly.
However, abstraction may induce spurious counterexamples,
which may lead to more and larger atomic sections than
actually necessary. One way to address this issue is to allow
the user to refine (some) uninterpreted function symbols with
fundamental properties like commutativity and associativity.
Such properties are important in the context of concurrent
programs because different interleavings often apply the same
operations in different order (e.g., (3+4)+5 vs. 4+(5+3)).

Building on abstraction by means of uninterpreted func-
tions, we present and compare two synthesis methods. They
repeatedly check for counterexamples (executions violating
the specification) and add atomic sections until no more
counterexamples exist. Counterexamples are computed by a
Satisfiability Modulo Theories (SMT) solver, using a Bounded
Model Checking (BMC) approach [21]. We unroll loops in the
program and guarantee correctness only up to the unrolling
depth. First, we present a novel method that we named
FixSwitches. It analyzes counterexamples with a heuristic to
guess the context switch that causes the problem, and forbids
this switch with an atomic section. It does not guarantee
minimality of the atomic sections, nevertheless it always pro-
duced a minimal solution in all our experiments. The second
method, named AtomConstr, is based on [24] and collects
constraints for the atomic sections based on the counterex-
amples: at least one context switch of every counterexample
must be forbidden. These constraints are then solved to obtain
a global minimum of atomic sections. We implemented our
synchronization synthesis approach in a prototype tool called
Atoss and present first experimental results. We also compared
our methods with several set minimization algorithms (e.g. the
QuickXplain algorithm [17]), trying to find a (locally) minimal
set of atomic sections that is sufficient to make the program
correct. It turns out that FixSwitches and the AtomConstr
algorithm scale best, so we do not present these experiments
in detail.
Related Work. A lot of work has been done to verify
concurrent programs [14, 10, 8]. Verification is an important
building block in our synthesis method: we use a BMC
approach [21] to search for counterexamples. Automatic syn-
thesis of synchronization was first considered in 1981 by
Clarke and Emerson [7]. In the last few years, this topic
was taken up again, e.g. in [23], [24], [5], [18], and [6].
Vechev et al. [24] abstract the program state using a finite
domain and compute counterexamples by explicitly searching

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 35

through the abstract transition system graph. Then, heuristics
decide whether to refine the abstraction or insert an atomic
section. The user has to provide a characterization of the
good states as specification. In contrast, our approach can take
the sequential behavior as implicit specification, it searches
for counterexamples symbolically, using an SMT solver, and
uses uninterpreted functions for abstraction. Counterexample-
guided synthesis is also considered in [5]. Counterexamples
are generalized to so-called partial-order traces that represent
all counterexamples that lead to the same error. Partial-order
traces are eliminated by lock insertion, but also by other
semantics-preserving program transformations like instruction
reordering. In contrast, we consider counterexamples with an
increasing number of context switches, thus we can skip the
generalization step. Kahlon [18] considers the problem of
fixing concurrency errors once they are detected. Given a set of
mutually atomic segments, the algorithm inserts locks around
the segments to fix the atomicity violation without introducing
new deadlocks. In contrast, our approach does not assume that
mutually atomic sections are already given.

Uninterpreted Functions are often used as an adequate
mean of abstraction in verification, e.g., in translation val-
idation [20], where a compiler is verified by checking its
input and output program for sequential correctness. Another
example is proving equivalence between a pipelined and a
non-pipelined version of the same processor [4, 3], where the
complex datapath elements such as the ALU are abstracted.
Abstraction by uninterpreted functions has also been used
for synthesizing controllers that avoid concurrency-related
problems in pipelined processors [15, 16]. The main difference
is that [15, 16] synthesizes controllers whose actions may
depend on the current inputs of the system. This amounts to
solving formulas of the form ∀inputs.∃control.∀outcomes.φ,
where φ is a correctness criterion. In this paper, we effectively
solve problems of the structure ∃control.∀inputs.φ, because
in software it is customary to have static synchronization
mechanisms that do not depend on the current inputs of a
program. This quantifier structure also makes the problem eas-
ier and allows us to deal with larger numbers of existentially
quantified variables, whereas the approach of [15, 16] scales
exponentially w.r.t. this number.
Contributions. In summary, the main contributions of this
work are as follows.

• We relieve the user from writing a specification by taking
the sequential behavior of the concurrent program as
implicit specification.

• To the best of our knowledge, we are the first to use
uninterpreted functions as abstraction for synthesis of
synchronization. We show that this allows us to handle
programs that cannot be handled with finite-domain ab-
stractions.

• We present and compare two methods to infer atomic
sections from counterexamples. One is novel and specif-
ically tailored towards our synthesis algorithm, the other
one is based on ideas from [24].

Outline. The rest of this paper is structured as follows. Sec-
tion II discusses preliminaries and establishes notation. Sec-
tion III presents an illustrating example. Section IV presents
the synchronization synthesis algorithms and introduces our
abstraction method based on uninterpreted functions. Experi-
mental results are shown in Section V. Section VI concludes
and discusses directions for future work.

II. PRELIMINARIES

Concurrent Programs. A concurrent program P is a set
of threads T = {t1, . . . tn}. Each thread ti is represented
as a control flow graph ti = (bi, ei, Vi, Ei), where Vi =
{si1, . . . , sim} is the set of nodes, bi ∈ Vi is a unique start
node, ei ∈ Vi is a unique end node, and Ei ⊆ Vi × Li × Vi
is a set of directed and labeled edges between the nodes. The
set of labels Li is comprised of Boolean expressions (B-expr),
defined below. If the control flow graph is cyclic, which means
that the program contains loops, we unroll them up to a
certain depth to make it acyclic. Each node sij is labeled
by a program statement. For simplicity, we assume that each
statement of the concurrent program corresponds to a different
node in the graph. Thus, different nodes can be labeled with
the same instruction. Edge labels express conditions. An edge
(s, l, s′) ∈ Ei means that s′ is the successor statement of s if
condition l holds. The node ei does not have a successor. We
denote with G the set of global variables shared between all
threads. Furthermore, each thread ti has a set of local variables
Li. To simplify the presentation, we assume that all program
variables range over the same domain D.

We will model concurrent programs as formulas in the
quantifier-free fragment of the Theory of Uninterpreted Func-
tions and Equality TU (QF_UF). To do so, we make the
following more formal definition of statements and conditions.
Let F be a set of (uninterpreted) functions f : D+ 7→ D, let
P be a set of (uninterpreted) predicates p : D+ 7→ B with
B = {true, false}, let v ∈ Li ∪ G be a variable, f ∈ F be an
uninterpreted function, let p ∈ P be an uninterpreted predicate,
and let = be the (interpreted) equality predicate. The set of
D-expressions and B-expressions is defined as follows.

D-expr ::= v | f(D-expr+)
B-expr ::= p(D-expr+) | D-expr = D-expr |

¬B-expr | B-expr ∨ B-expr

A statement is of the form v := r, where v ∈ Li ∪ G
and r ∈ D-expr. That is, all statements are assignments; we
assume that all function calls have been inlined and do not
allow recursion. An edge label l ∈ Li is a B-expression.
The semantics of statements and conditions on edges are
as expected. The labeled edges are such that all statement
nodes s ∈ Vi \ {ei} have exactly one successor for every
variable valuation (i.e., for a given scheduling, the program
is deterministic). We will write V =

⋃
i Vi for the set of all

graph nodes, V ′ =
⋃
i(Vi \ {ei}) for all but the end nodes,

and thread(sij) for the thread ti to which the statement sij
belongs.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 36

Listing 1 RSA decryption using the Chinese Remainder
Theorem (CRT)
Input: large primes p, q; ciphertext c; private exponent d;
Output: plaintext in mp

1: bool fin1=false, fin2=false;
2: int merged=0, mp=0, mq=0;
3: procedure THREAD1

4: mp=cd mod p;
5: fin1 = true;
6: if merged=0 && fin2

7: merged=1;
8: if merged=1
9: mp=crt(mp,mq);

10: procedure THREAD2

11: mq=cd mod q;
12: fin2 = true;
13: if merged=0 && fin1

14: merged=2;
15: if merged=2
16: mp=crt(mp,mq);

Concurrent Executions and Correctness. An execution of
program P is a sequence of statements s = s1, s2, . . . ∈ V ∗
respecting the program semantics. An atomic section set is a
set A ⊆ V ′. A program execution s = s1, s2, . . . respects
the atomic section set A if si ∈ A implies thread(si) =
thread(si+1) for all i. That is, if statement si is protected by an
atomic section, then no thread switch is allowed immediately
after the statement. An execution is sequential if it respects
the atomic section set A = V ′. In order to define a notion of
correctness for concurrent programs, we introduce a function
eval : V ∗ → D|G|, which — given an execution s = s1, s2, . . .
of P — returns the values of the global variables after the
execution. We say that an execution s is correct if there
exists a sequential execution s′ such that eval(s) = eval(s′).
A counterexample is an incorrect execution. We define a
procedure ce(A) which returns a counterexample that respects
an atomic section set A ⊆ V ′, or the constant None if no such
counterexample exists. An atomic section set A is sufficient if
ce(A) = None. An atomic section set A is a local minimum
if it is sufficient and all A′ ⊂ A are not sufficient. An atomic
section set A is a global minimum if it is sufficient and all
A′ with |A′| < |A| are not sufficient. Given an execution
s = s1, s2, . . . of P , we say that a thread switch after statement
si (with thread(si) 6= thread(si+1)) is mandatory if si 6∈ V ′,
i.e., si is an end node of some control flow graph. Otherwise,
the thread-switch is non-mandatory.

III. ILLUSTRATING EXAMPLE

We give an example to demonstrate our approach, in par-
ticular the benefits of abstraction with uninterpreted func-
tions. Consider the problem of decrypting an RSA-encrypted
message (cf. Listing 1). For efficiency, many cryptographic
libraries employ the Chinese Remainder Theorem (CRT) dur-
ing RSA decryption [19]. As usual, p and q are two large
prime numbers, c represents the ciphertext and d is the private
decryption exponent. In standard RSA, the message m is
obtained by computing m = cd mod p · q. To speed up the
decryption process, Thread 1 computes mp = cd mod p and
Thread 2 computes mq = cd mod q. After mp and mq are
found, one of these threads uses the function crt to compute
the final message (modulo p · q) and stores it in mp. The

Fig. 1. Overview of our synthesis approach.

concurrent program is correct if the final message mp equals
the message obtained by a sequential run of the two threads
(in either order).

Without any atomic sections, the following problem could
occur. If Thread 1 is interrupted between lines 6 and 7, and
Thread 2 executes lines 13–16 in the meantime, Thread 1 will
subsequently set merged to 1, and execute line 9. However,
the merge has already been performed by Thread 2, and doing
it a second time results in erroneous output. The problem could
be prevented by making lines 6–7 and lines 13–14 atomic
sections.

The RSA algorithm uses complex arithmetic functions
(modular reductions, exponentiations, etc.) on very large num-
bers. Modeling this program with linear integer arithmetic is
not possible, due to the complex operations involved. On top of
that, modeling it with bitvectors is also not feasible, due to the
large bitwidths involved. However, when using an abstraction
with uninterpreted functions, the resulting SMT formula is
rather simple. The line mp = cd mod p, for example, reduces
to one simple equality between a domain variable and an
uninterpreted function instance: mp = fmodexp(c, d, p). Using
abstraction with uninterpreted functions, our tool was able to
find the minimal set of atomic section in a few seconds (atomic
sections spanning lines 6–7 and lines 13–14). Without any
abstraction, it would not be possible to verify this program.

Note that the finite-domain abstraction approach presented
in [24] cannot deal with this example. One problem is that
finite-domain abstractions are not equality preserving. They
only track properties like the parity of variable values, or
whether certain values are in a particular interval. This is
usually too coarse to prove the equality of values (without
refining the abstraction until all bits of the relevant variables
are tracked). Note that this problem also occurs for simple
functions such as addition or multiplication.

IV. SYNTHESIS APPROACH

The working principle of our synthesis approach is outlined
in Figure 1. The main input is a concurrent program P without
any synchronization. First, the program is abstracted using
uninterpreted functions. This step is explained in Section IV-A.
Next a counterexample-guided synchronization refinement
loop is entered. There is a database of (candidates for) atomic
sections, which is initially empty. Considering these already
known atomic sections, we next encode the concurrent verifi-
cation problem into an SMT formula. Satisfying assignments
of this formula correspond to counterexamples, i.e., executions
of the concurrent program which violate the specification. The

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 37

SMT encoding is discussed in Section IV-B. In the verification
step, an SMT solver searches for a counterexample in form
of a satisfying assignment of the constructed formula. If a
counterexample is found, it is analyzed in order to infer
new atomic sections that prevent (at least) this particular
counterexample, and we loop back to checking whether the
program is correct now. Two different methods for analyzing
counterexamples and refining the atomic sections will be
presented in Section IV-C and Section IV-D, respectively. If
no more counterexamples exist, we have found a set of atomic
sections that are sufficient to prevent erroneous executions and
the algorithm terminates.

A. Abstraction using Uninterpreted Functions

A program statement updates a variable with a new value
that is the result of some computation. The computation can be
as simple as an increment, or an inlined addition, but it can also
be a call to a complex n-ary function. We observe that in many
cases, correctness of a program does not depend on the actual
semantics of the functions involved in the computations. For
example, if you replace all additions in a correct concurrent
program by multiplications, the resulting program still should
not depend on the scheduling. The only thing that is relevant
to correctness is functional consistency, i.e., given the same
inputs, a particular statement should always produce the same
result.

It might be obvious to use logics based on the theories of
linear integer arithmetic, linear real arithmetic, or bitvector
arithmetic, which include interpreted and axiomatized sym-
bols encoding addition, multiplication, etc. In fact, loop-free
programs can be modeled perfectly using bitvector logic [9].
However, by doing so we burden the SMT solver unnecessar-
ily, because it now has to look for solutions that satisfy all the
axioms of the interpreted symbols. In addition to that, more
complex operations might not easily (or even not at all) be
expressible in terms of the available interpreted functions.

Thus, we suggest to “forget” all the semantics of a state-
ment, and abstract it using uninterpreted functions only. E.g.
a statement a = b + c becomes a = fplus(b, c), where
fplus ∈ F is an uninterpreted symbol. In the example
presented in Section III, there are two uninterpreted functions
that we would need to introduce: fmodexp(·, ·, ·) and fcrt(·, ·).

However, even though the functions we use are uninter-
preted, there are two important properties that are of particular
interest in the setting of concurrency: commutativity and
associativity. The reason for that is that different interleavings
of threads will lead to a different order of operations. However,
knowing that some functions are commutative and associative,
it is still possible to prove that the final outcome is the same.
One possible way to achieve this is to add those concrete
instances of the commutativity and associativity axioms that
are actually relevant to a particular example: i.e., state for
every pair of variables a, b that fplus(a, b) = fplus(b, a), and
similar for associativity. A potentially more efficient way is
to add support for commutativity and associativity directly in
the congruence closure module of the underlying SMT solver.

Listing 2 C Code
1: int g;
2: procedure THREAD1
3: int x = g;
4: x = x + 1;
5: g = x;
6: x = x + 1;

7: procedure THREAD2
8: int y = g;
9: y = y + 2;

10: g = y;
11: y = y + 2;

Listing 3 SSA Constraints
2: procedure THREAD1
3: t1x1 = t1g1

4: t1x2 = t1x1 + 1
5: t1g2 = t1x2

6: t1x3 = t1x2 + 1

7: procedure THREAD2
8: t2y1 = t2g1

9: t2y2 = t2y1 + 2
10: t2g2 = t2y2

11: t2y3 = t2y2 + 2

The theory of how to do this has been outlined in [1]; we
are currently working on adding this feature to the Z3 SMT
solver [12].

B. SMT Encoding of the Concurrent Verification Problem

This section explains how we encode the concurrent ver-
ification problem into an SMT formula such that satisfying
assignments correspond to counterexamples. SMT encoding
of programs has been addressed before, e.g. in [14] and [11].
We use an encoding called TCBMC [21], with small modifica-
tions. The main idea is to limit the maximum number of thread
switches while allowing them to be anywhere in the code. This
has the advantage that we are able to analyze counterexamples
with an increasing number of thread switches. Most concur-
rency errors appear with only a few thread switches [13]. By
first eliminating these counterexamples, we forbid many other
execution paths representing the same bug. TCBMC consists
of four steps.

Step 1: Preprocessing. Complex program statements are
not always executed atomically. However, if there is at most
one occurrence of a global variable in a statement, context
switches during the execution of the complex statement obvi-
ously cannot introduce concurrency-related errors. In contrast
to this, context switches in statements that have more than
one occurrence of global variables can introduce concurrency
bugs. To model such context switches, we split statements with
more than one reference to a global variable. This is done like
in a compiler, where complex statements are broken down
into simple instructions. For example, consider the statement
g3 = g1 + g2;, where g1, g2, g3 are global variables. The
statement is translated into l1 = g1; l2 = g2; g3 = l1+l2;,
where l1, l2, l3 are fresh local variables.

Step 2: Applying CBMC Separately on Each Thread.
The next step is to unroll all loops, inline all function calls,
and transform the code into static single assignment form (SSA
form), where each variable is assigned only once. Hence, for
each assignment to a variable, a new copy of this variable is
created. Additionally, all variable names are prefixed with a
thread identifier. E.g., for a global variable g (cf. Listing 2),
copies “t1g1”, “t1g2”, etc. are created (cf. Listing 3). This

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 38

second step is performed for each thread in isolation, as
done in CBMC [9]. It yields a separate formula for each
thread, not taking into account that an execution of a thread
can be interrupted by another one, which may change global
variables. This is dealt with by Step 4, where additional
concurrency-related constraints are added. To illustrate Step
2, consider the simple program shown in Listing 2. After
applying CBMC separately on each thread, we get a formula
representing the two threads as illustrated in Listing 3.

Step 3: Generating Block Variables and Atomic Sections.
During an execution, sequentially executed lines of code from
one thread form a so-called context switch block. For each line
l of thread t, a so-called block variable blockt(l) is introduced.
The value of the block variable encodes to which context
switch block the line belongs. Lines with the same values
for their block variables belong to the same context switch
block, and the blocks are executed in increasing order. So,
by choosing values for the block variables, the SMT solver
establishes the scheduling of the threads. Potential values
of the block variables for our example from Listing 2 are
illustrated in Figure 2. The block variables have to satisfy the
following constraints:

1) The first block value of each thread should be positive,
i.e., ∀t ∈ T : blockt(1) ≥ 1.

2) For all threads, the block variable values must increase
monotonically w.r.t. line numbers within a thread, i.e.,
∀t ∈ T, l ∈ t : blockt(l) ≤ blockt(l + 1).

3) The values of the block variables are not allowed to
change by one (at least one thread should be running in
between), i.e., ∀t ∈ T, l ∈ t : blockt(l)+ 1 6= blockt(l+
1).

4) No block variable value must exceed a given bound n.
This is enforced by ∀t ∈ T : blockt(m) ≤ n, where m
is the last line number of the respective thread.

5) Each block variable value can only occur in one thread,
i.e., ∀t ∈ T, l ∈ t : ∀t′ ∈ T \ t, l′ ∈ t′ : blockt(l) 6=
blockt′(l′).

Note that these rules for the block variables differ from [21].
The authors in [21] only give a detailed description of how to
encode the block variables for two threads. For extending this
to the general case, they suggested to enforce a round robin
scheme among the threads, or to introduce new variables that
represent which thread runs in which context switch block.
We tried both methods, but found out that our definition of
the block variables is much more efficient.

To model an atomic section between two consecutive lines
of code, it is enough to require that the block variables for
these lines must be equal. For instance, to model an atomic
section in thread 1 between line 2 and 3, we add the constraint
block1(2) = block1(3). By adding the constraint t1a2,3 →
block1(2) = block1(3), where t1a2,3 is a boolean variable, we
can easily enable or disable atomic sections in our synthesis
algorithm by setting t1a2,3 to true or false.

Step 4: Generating Constraints for Concurrency. We
have to adjust the SSA statements of each thread, as con-
structed in Step 2, to capture context switches. A statement

Fig. 2. Context Switch Blocks and Copy Variables.

Listing 4 SSA Constraints
1: procedure THREAD1
2: if block(t1x1) = block(t1g1)
3: t1x1 = t1g1;
4: else
5: b = block(t1g1) - 1;
6: t1x1 = gcopy(b);
7: t1x2 = t1x1 + 1;
8: t1g2 = t1x2;
9: t1x3 = t1x2 + 1;

10: procedure THREAD2
11: if block(t2y1) = block(t2g1)
12: t2y1 = t2g1;
13: else
14: b = block(t2y1) - 1;
15: t2y1 = gcopy(b);
16: t2y2 = t2y1 + 2;
17: t2g2 = t2y2;
18: t2y3 = t2y2 + 2;

that reads a global variable has to distinguish if the global
variable was last assigned in its own context switch block or
in a previous one. In the former case, the local value of the
global variable is up to date and can be used. In the latter case,
another thread may have altered the global variable, and we
need to take the value as assigned by the other thread. Hence,
we create copies of the global variables for each block, storing
the values of the global variables at the end of the block. The
SSA statement can access the copies of the global variables
when needed. This is illustrated in Fig. 2. In this example we
have four context switch blocks, so we create four additional
copies gcopy(1) to gcopy(4) for each global variable. At the end
of each block, we store the value of the last assignment of the
global variable in the respective copy.

Let us continue our example. After applying Step 4 to our
SSA constraints from Listing 3 we get the final concurrency
constraints shown in Listing 4, where block(x) gives the
context switch block in which the variable x was assigned.
Note that we only have to change an SSA statement if it reads
a global variable. In this case, we have to check if the local
value is up to date, or if we must use the copy of the global
variable from the previous context switch block.

Modeling Assumptions and Assertions: We extended the
SMT encoding to also support assertions and assumptions,
which are Boolean conditions in the input program P . A
counterexample must satisfy all assumptions, but violate one
assertion or sequential correctness. Hence, modeling assump-
tions and assertions in the SMT encoding is straightfor-
ward: For computing counterexamples, we add the constraints∧
i assumptioni∧¬

(
seqSpec∧∧j assertj

)
. When searching

for valid runs, the negation (¬) is omitted. Assumptions can,
for example, be used to model wait statements.

C. Finding Atomic Sections with the FixSwitches Algorithm

We now turn to the first method to analyze counterexamples
in order to infer a small but sufficient set of atomic sections.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 39

Listing 5 FixSwitches Algorithm
1: procedure FIXSWITCHES
2: A := ∅
3: while ce(A) 6= None do
4: s := (s1, s2, . . . sm) := ce(A)
5: (k1, . . . , kn) := findSwitches(s)
6: for i = n . . . 1 do
7: if existsValidRun((s1, s2, . . . ski)) then
8: A := A ∪ {ski

}
9: break

10: return A

Listing 5 presents a method to compute atomic sections
based on a heuristic to analyze counterexamples. As outlined
in Fig. 1, it starts with an empty set of atomic sections
A. In a loop, a new counterexample s = s1, s2, . . . sm is
computed that respects the atomic sections A that have already
been found so far. If no such counterexample exists, then A
must be sufficient and the algorithm terminates. Otherwise,
the procedure findSwitches computes all non-mandatory
context switches of the counterexample s in form of a se-
quence of indices k such that thread(sk) 6= thread(sk+1) and
sk ∈ V ′. Next, the algorithm analyzes the context switches
of the counterexample in reverse order, i.e. starting with
the last non-mandatory context switch kn. The procedure
existsValidRun now checks whether it is possible to
extend the incomplete execution s1, s2, . . . skn

to a complete
one that is correct and does not have a context switch at
kn. If this is not the case, the program cannot be fixed
just by forbidding the context switch kn; a concurrency
problem must already exist in an earlier stage of the exe-
cution s. Thus, we continue to analyze the previous context
switch kn−1. Eventually, we must find an index i such that
existsValidRun(s1, . . . , ski

) returns true, because if there
are no more switches left in the prefix, then a sequential
execution is possible. If existsValidRun returns true, we
add an atomic section that forbids the context switch ki (thus
making the current counterexample infeasible), and look for a
new counterexample.

The procedure existsValidRun can be implemented
similar to ce, based on an SMT-solver call. In the SMT-
solver query of existsValidRun, we cannot only assert
the execution path of the prefix but also all variable values
(taken from the satisfying assignment of the SMT-call in ce)
in the different execution steps of the prefix. This renders
existsValidRun-calls typically much cheaper than ce-
calls in terms of computation time. The performance of the
entire algorithm increases if we consider counterexamples
with a small number of context switches first, and increase
the maximum number of (non-mandatory) context switches
incrementally. That is, only if no more counterexamples with
one context switch exists, we search for counterexamples with
two context switches, and so on.

Listing 6 illustrates how this algorithm works. According
to the implicit sequential execution, the global variable h

Listing 6 Fix Switches Example
1: int g; int h = 0;
2: procedure THREAD1
3: g = 0; s1−−−−−−−−−−−−−−−−−→

s2←−−−−−−−−−−−−−−−−−−−−−−−4: if g = 0 then
5: int tmp = h;
6: h = tmp + 1; s3−−−−−−−−−−−−−−−−→

7: procedure THREAD2

8: g = 1;
9: if g = 1 then

10: int tmp = h;
11: h = tmp + 1;

Listing 7 Fix Switches Example (continued)
1: int g; int h = 0;
2: procedure THREAD1
3: g = 0; block(3)=1 s1−−−−−−−−−−−−−−−−→

4: if g = 0 then
5: int tmp = h;
6: h = tmp + 1;

7: procedure THREAD2

8: g = 1; block(8)=2
9: if g = 1 then block(9)=2

10: int tmp = h;
11: h = tmp + 1;

should be 2 after executing Thread1 and Thread2 in parallel.
Suppose, we get the following counterexample: s = s1, s2, s3,
where s1 = {3, 8}, s2 = {9, 4}, and s3 = {6, 10}. The last
switch s3 is a mandatory context switch. So in order to get
rid of the counterexample, we can either forbid s1 or s2.
First we investigate, whether switch s2 is the bad switch.
Therefore, we fix the execution until s2. So first one line
of thread 1 has to be executed (block(3)=1) and then two
lines of thread 2 (block(8)=block(9)=2), see Listing 7. Now
the algorithm checks whether it is possible to extend this
incomplete execution to a complete correct one. Since this
is not the case, s2 is innocent, and the real problem lies in
s1. In the next step, the algorithm forbids s1 by inserting an
atomic section between line 3 and line 4.

D. Finding Atomic Sections with the AtomConstr Algorithm

The Atomicity Constraint Algorithm (AtomConstr), shown
in Listing 8, is inspired by [24]. While FixSwitches added
atomic sections to the set A in each iteration, AtomConstr
only adds candidates for atomic sections to a set of sets
A. Initially, A is empty. The algorithm searches in a loop
for counterexamples s = s1, s2, . . . sm that respect A and
computes all thread switches K = {k1, k2, . . . kn} of s.
The set K represents all possible ways to eliminate the

Listing 8 AtomConstr Algorithm
1: procedure ATOMICITYCONSTRAINT
2: A := ∅
3: while ce′(A) 6= None do
4: s := (s1, s2, . . . sm) := ce′(A)
5: K := {k1, . . . , kn} := findSwitches(s)
6: A := A ∪ {K}
7: return hittingSet(A)

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 40

TABLE I
EXPERIMENTAL RESULTS. The column #Lines gives the lines of code after
preprocessing with FoREnSiC. All other columns give total execution times

in seconds. We used a timeout (t.o.) of 5400 seconds. The numbers in
brackets give the number of iterations in the refinement loop of Fig. 1.

integer arithmetic uninterpreted func.
#L

in
es

A
to

m
C

on
st

r

Fi
xS

w
itc

he
s

A
to

m
C

on
st

r

Fi
xS

w
itc

he
s

RSA 23 – – 1.5(2) 1.26(4)

linEq 2t 1 38 0.7(2) 0.9(2) 0.6(2) 0.6(2)
linEq 2t 2 55 43(4) 42(4) 1.7(4) 1.8(4)
linEq 2t 3 70 550(6) 623(6) 3.2(6) 4.8(6)
linEq 2t 4 87 4882(8) 5320(8) 6.9(8) 8.7(8)
linEq 2t 6 121 t.o. t.o. 21(12) 17(12)
linEq 2t 8 155 t.o. t.o. 44(16) 42(16)
linEq 2t 10 189 t.o. t.o. 71(20) 86(20)
linEq 2t 12 223 t.o. t.o. 117(24) 129(24)
linEq 2t 14 257 t.o. t.o. 186(28) 169(28)

linEq 3t 1 52 25(3) 26(3) 2.3(3) 2.1(3)
linEq 3t 2 76 t.o. t.o. 8.2(6) 7.8(6)
linEq 3t 3 97 t.o. t.o. 18(9) 18(9)
linEq 3t 4 121 t.o. t.o. 42(12) 38(12)
linEq 3t 6 169 t.o. t.o. 113(18) 106(18)
linEq 3t 8 218 t.o. t.o. 247(24) 258(24)
linEq 3t 10 265 t.o. t.o. 398(30) 378(30)

linEq 4t 1 66 t.o. t.o. 7(4) 3.9(4)
linEq 4t 2 97 t.o. t.o. 28(8) 38(8)
linEq 4t 3 124 t.o. t.o. 89(12) 90(12)
linEq 4t 4 155 t.o. t.o. 150(16) 169(16)
linEq 4t 6 217 t.o. t.o. 485(24) 506(24)

VecPrime 2 157 173(836) 53(108) 2.9(16) 3.1(16)
VecPrime 3 221 471(942) 190(162) 11(24) 12(24)
VecPrime 4 290 2018(1018) 519(2016) 66(32) 69(32)
VecPrime 5 359 t.o. 1356(2070) 627(40) 514(40)

IIO 60 1.1(9) 1.3(9) 0.9(9) 1.1(9)
CVE 150 11(21) 13(21) 4.1(12) 5.8(12)
TG3 133 17(74) 21(74) 9.8(74) 13(74)

counterexample s: At least one of the switches from K must
be forbidden by an atomic section to make s unfeasible. In
the next step, we add K to A. The set A consists of sets of
atomic sections candidates and from each set, at least one of
the atomic section must be active to forbid the corresponding
counterexample. So A represents a CNF formula.

A hitting set forA is a set A that shares at least one common
element with every set in A. If no more counterexample exists,
the minimal hitting set of A represents a global minimum
of atomic sections. One efficient way to compute a minimal
hitting set is described in [22].

V. EXPERIMENTAL RESULTS

We have evaluated our approach experimentally, using a
prototype implementation for concurrent C programs, called
Atoss. It uses the front-end of the FoREnSiC [2] tool, which
in turn uses gcc to parse the input C files. We have added a
new back-end to FoREnSiC to create the SMT queries that
we submit to the Z3 solver. The models returned by Z3 are
the counterexamples that Atoss analyzes to create a refined

SMT query, until Z3 returns UNSAT and we have found a
solution. In addition to the illustrative example presented in
Section III, we used two parameterized benchmarks called
linEq and VecPrime, which can also be solved with
integer arithmetic. This enables us to rate the effects of our
abstraction with uninterpreted functions. To show that our
approach is also applicable to real-world problems, we also ran
Atoss on three bugs in Linux kernel modules. Our prototype
implementation, all benchmarks, as well as scripts to run
them are available for evaluation at http://www.iaik.tugraz.at/
content/research/design verification/atoss/.

Our experimental results are summarized in Table I.
We show execution times to synthesize synchronization for
each of the benchmarks, using our two different algorithms
(FixSwitches and AtomConstr), comparing abstraction with
uninterpreted functions and normal integer arithmetic.

The RSA example has already been explained in Sec-
tion III. This benchmark can only be solved by abstraction
with uninterpreted functions, as the complex arithmetic func-
tions involved are beyond the capabilities of state-of-the-art
QF_LIA solvers. FixSwitches finds the atomic sections one
would naturally expect (lines 6–7 and 13–14; see Section III).
Interestingly, AtomConstr computes a different solution of
the same size: it suggests to make the lines 5–6 and 12–13
atomic. This is also correct because if each thread decides on
the merge right after being finished, only the second thread to
finish can enter the if to do the merge.

The linEq benchmark is based on the idea of checking
whether a given n-tuple satisfies a given linear equation with
n variables. Multiplications of the equation’s coefficients with
the elements of the n-tuple is distributed over multiple threads.
This example is scalable w.r.t. two different parameters: the
number of threads, and the size of n. The naming convention in
Table I is as follows: “linEq 3t 4” has 3 threads and n = 4.
We can see from Table I that using uninterpreted functions
for abstraction significantly speeds up the synthesis process,
and even enables synthesis for many benchmarks that would
timeout otherwise. Concerning scalability, it should be noted
that each of these benchmarks contains n times the number
of threads potential race conditions. In real-world examples,
we usually expect a much lower number of potential concur-
rency issues. These benchmarks were specifically designed to
challenge the scalability of our approach.

The idea of VecPrime benchmark is that there is a
vector of numbers, and we want to count the contained prime
numbers. One thread starts counting from the “left” side of
the vector, the other one starts from the “right” side. Every
number that has been taken into account is set to 0. This way
it is ensured that no element is counted twice.1

We also applied our tool to three real world examples.
The first one (linux_iio) is based on a bug2 found in
the industrial I/O subsystem (IIO) of the linux kernel. IIO

1We assume that the check isPrime(0) is significantly faster than other
calls to isPrime. Thus, it hardly matters for efficiency that both threads go
through the entire vector, for simplicity.

2http://git.io/JjCEXg

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 41

polls hardware-devices for triggers, to notify consumers of
events, e.g. that new data is available. A global variable counts
the number of running threads. The race condition occurs, if
several trigger-consumer modify this variable simultaneously.

The second example, the CVE-2014-0196 benchmark is
based on a bug3 in a Linux kernel module, which has only been
discovered very recently. Slightly simplified, a race condition
could lead to an erroneous value in a variable that counts how
much space remains in a buffer, which can subsequently result
in a buffer overflow. This can lead to memory corruption, and
exploits have been published that allow crashing the system
or gaining root access. We have fed the relevant part of the
kernel module’s code (150 lines of code) to Atoss.

Finally, the last example (linux_tg3) is based on a bug4

found in the Broadcom Tigon3 (TG3) ethernet driver. In the
retrieval function for hardware statistics, the driver retrieves
the statistics from the device and stores it into a buffer. Since
the tg3 driver updates the hardware statistics in a non-atomic
way, the state of the statistics can get inconsistent.

For all three real-world examples, we did not have to add
any specification, but just relied on the implicit specification
given by serializability. Within just a few seconds, Atoss was
able to find a fix. For CVE and TG3, the computed fix matches
the “official” fix that has been made by the kernel community.
For IIO our tool found a slightly different fix.

When comparing FixSwitches with AtomConstr, there is
no clear winner. Each algorithm is faster for some examples. It
should be noted that both algorithms always found a globally
minimal set of atomic sections for all our benchmarks.

VI. CONCLUSION

We have presented a new approach to synthesis of syn-
chronization for concurrent programs. Using uninterpreted
functions, we are able to efficiently abstract details of the
program that are irrelevant for concurrency issues. We have
shown experimentally that this abstraction is more efficient
than just using integer arithmetic without any abstraction.
Also, we are able to handle benchmarks that would not have
been feasible at all, using integer arithmetic.

Moreover, we have demonstrated that this approach can
be applied to real-world concurrency issues, such as race
conditions in kernel modules. In particular, the applicability
of our approach is supported even further by a very low
entry barrier. We do not require designers to write a formal
specification. They can simply run our tool on their code as
it is, and still detect and fix concurrency issues.

Due to this encouraging results, we plan to do future
work on several improvements and optimizations. First, we
would like to add support for commutative and associative
(yet still uninterpreted) functions, to improve the abstrac-
tion/expressibility trade-off. This should lead to a performance
boost for benchmarks where the order of operations is not
relevant for the final result. Second, we note that in practical

3https://bugzilla.redhat.com/show bug.cgi?id=1094232
4http://git.io/7wWrKw

examples, concurrency bugs are usually limited to a few lines
of code only. Thus, we would like to be able to automatically
disregard program parts that do not contain any concurrency
bugs, by abstracting them with uninterpreted functions. This
should improve scalability so that we could deal more easily
with even larger real-world examples.

REFERENCES

[1] L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Con-
gruence closure modulo associativity and commutativity. In FroCoS’00,
LNCS 1794, 2000.

[2] R. Bloem, R. Drechsler, G. Fey, A. Finder, G. Hofferek, R. Könighofer,
J. Raik, U. Repinski, and A. Sülflow. FoREnSiC - an automatic
debugging environment for C programs. In HVC’12, LNCS 7857.
Springer, 2012.

[3] R. E. Bryant, S. M. German, and M. N. Velev. Processor verification
using efficient reductions of the logic of uninterpreted functions to
propositional logic. ACM Trans. Comput. Log., 2(1):93–134, 2001.

[4] J. R. Burch and D. L. Dill. Automatic verification of pipelined
microprocessor control. In CAV’94, LNCS 818. Springer, 1994.

[5] P. Cerný, T. A. Henzinger, A. Radhakrishna, L. Ryzhyk, and T. Tarrach.
Efficient synthesis for concurrency by semantics-preserving transforma-
tions. In CAV’13, LNCS 8044. Springer, 2013.

[6] S. Cherem, T. M. Chilimbi, and S. Gulwani. Inferring locks for atomic
sections. In PLDI’08. ACM, 2008.

[7] E. M. Clarke and E. A. Emerson. Design and synthesis of synchro-
nization skeletons using branching-time temporal logic. In Logic of
Programs. Springer, 1981.

[8] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244–263, 1986.

[9] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C
programs. In TACAS’04, LNCS 2988. Springer, 2004.

[10] E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies. VCC: A practical system for
verifying concurrent C. In TPHOLs’09, LNCS 5674. Springer, 2009.

[11] L. Cordeiro and B. Fischer. Verifying multi-threaded software using
SMT-based context-bounded model checking. In ICSE’11. ACM, 2011.

[12] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In
TACAS’08, 2008.

[13] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In IPDPS’03. IEEE, 2003.

[14] M. K. Ganai and A. Gupta. Efficient modeling of concurrent systems
in BMC. In SPIN’08, LNCS 5156. Springer, 2008.

[15] G. Hofferek and R. Bloem. Controller synthesis for pipelined circuits
using uninterpreted functions. In MEMOCODE’11. IEEE, 2011.

[16] G. Hofferek, A. Gupta, B. Könighofer, J.-H. R. Jiang, and R. Bloem.
Synthesizing multiple boolean functions using interpolation on a single
proof. In FMCAD’13. IEEE, 2013.

[17] U. Junker. Quickxplain: Preferred explanations and relaxations for over-
constrained problems. In AAAI’04. AAAI Press / The MIT Press, 2004.

[18] V. Kahlon. Automatic lock insertion in concurrent programs. In
FMCAD’12. IEEE, 2012.

[19] A. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996.

[20] A. Pnueli, O. Strichman, and M. Siegel. The code validation tool CVT:
Automatic verification of a compilation process. STTT, 2(2):192–201,
1998.

[21] I. Rabinovitz and O. Grumberg. Bounded model checking of concurrent
programs. In CAV’05, LNCS 3576. Springer, 2005.

[22] R. Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1),
1987.

[23] A. Solar-Lezama, C. G. Jones, and R. Bodı́k. Sketching concurrent data
structures. In PLDI’08. ACM, 2008.

[24] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of
synchronization. In POPL’10. ACM, 2010.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 42

