
Simulation and Formal Verification of x86
Machine-Code Programs that make System Calls

Shilpi Goel Warren A. Hunt, Jr. Matt Kaufmann Soumava Ghosh
Department of Computer Science
The University of Texas at Austin

Abstract—We present an approach to modeling and verifying
machine-code programs that exhibit non-determinism. Specifi-
cally, we add support for system calls to our formal, executable
model of the user-level x86 instruction-set architecture (ISA).
The resulting model, implemented in the ACL2 theorem-proving
system, allows both formal analysis and efficient simulation of
x86 machine-code programs; the logical mode characterizes an
external environment to support reasoning about programs that
interact with an operating system, and the execution mode directly
queries the underlying operating system to support simulation.
The execution mode of our x86 model is validated against both its
logical mode and the real machine, providing test-based assurance
that our model faithfully represents the semantics of an actual
x86 processor. Our framework is the first that enables mechanical
proofs of functional correctness of user-level x86 machine-code
programs that make system calls. We demonstrate the capabilities
of our model with the mechanical verification of a machine-
code program, produced by the GCC compiler, that computes
the number of characters, lines, and words in an input stream.
Such reasoning is facilitated by our libraries of ACL2 lemmas
that allow automated proofs of a program’s memory-related
properties.

I. INTRODUCTION

To enable the formal verification of x86 machine-code
programs, we are developing a tool suite based on our formal,
executable model of the x86 instruction-set architecture (ISA).
The x86 ISA has been modeled in the ACL2 programming
language; we have formalized the semantics of most user-
level instructions with an interpreter that can execute x86
machine-code programs. We have extended our x86 model
with a formalization of an x86 system call instruction, namely,
syscall. The execution of system calls is not provided
directly by the x86 ISA; it is provided by a contemporary
operating system, like Linux, FreeBSD, Windows, or MacOS,
to a user process. Our extension to the x86 ISA model includes
the semantics of various system calls, thereby allowing us to
prove properties of user-level x86 machine-code programs that
rely on an operating system for system call service.

As is the case for all other instructions specified, our
extended model enables not only the formal analysis of system
calls, but also supports their simulation. In fact, our extended
model provides the capability to simulate and verify non-
deterministic computations in general, including system calls
and x86 instructions like rdrand. We achieve this by way
of two modes in our model: the logical mode that supports
reasoning and the execution mode that allows simulation.

Our evolving x86 ISA model includes specifications for
64-bit segmentation, paging, supervisor calls/returns, system
registers, and many other system-level features. This model is
intended to mimic the ISA-level behavior of an x86 processor;

it does not currently include a specification of specialized
hardware, such as the APIC and RTC.

One might wonder why we choose to formally analyze
machine-code programs. In situations where source programs
are unavailable, such as executables downloaded from the Web
or many software distributions, we have no alternative but
to analyze machine-code programs. Compilers may produce
incorrect machine-code from higher-level programs, so it is
important to verify the actual code that is executed on a
processor. Also, programmers often optimize their high-level
programs by embedding assembly code in them; the veri-
fication of such programs is impossible without the ability
to analyze machine code. It quickly becomes intractable to
build and maintain tools targeting various aspects of software
verification; our approach provides a single, unified model that
can serve multiple purposes.

Our contributions are in three areas: one, a highly-validated
formal, executable model of the x86 ISA extended with system
calls; two, a framework that, for the first time, provides
the capability both to formally analyze and to efficiently
simulate user-level x86 machine-code programs that exhibit
non-determinism; and three, ACL2 libraries of lemmas that
facilitate automated machine-code proofs. We present a case
study to demonstrate the capabilities of our tool suite: the proof
of correctness of a machine-code, word-counting program
much like Linux wc. This case study suggests the viability
of interactive theorem-proving for complex interpreter-based
models with non-determinism, as in the case of our x86
model extended with system calls. All the specification and
verification of programs in our tool suite is done using the
ACL2 logic and its associated mechanical theorem-proving
system; we know of no comparably rigorous environment for
the analysis of x86 machine-code programs.

We emphasize the difference between our inference-based
approach and flow-based static analysis approaches. Though
flow-based approaches are being successfully used to detect
vulnerabilities like buffer overflows, they can not guarantee
that a given program meets its specifications. Indeed, the lack
of requirement of specifications as input is considered to be the
biggest strength of these approaches, thereby making them ac-
cessible to the average programmer. Our approach falls under
“heavyweight” verification; given a program’s specifications,
our focus is on building automated tools to verify whether the
program behaves as intended. Note that it is possible to prove
the absence of vulnerabilities in our approach.

In Section II, we describe our x86 ISA model and its
validation process. We discuss the extension of our model with
system calls in Section III. We introduce our example program
in Section IV, and present its proof of functional correctness in

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 91



Section V. We conclude with discussions of related and future
work in Sections VI and VII.

II. X86 ISA MODEL

Our x86 ISA model [1] implements an interpreter-style
operational semantics [2]. Our x86 model’s state contains reg-
isters like the general-purpose registers (rax, rbx, etc.), seg-
ment registers, flags register, model-specific registers, control
registers, instruction pointer rip, and memory. Each machine
instruction is specified by a semantic function that takes an x86
state and returns an appropriately modified next state. A step
function fetches, decodes, and then executes an instruction by
calling the appropriate instruction semantic function. Finally, a
run function takes the number of instructions, n, to be executed
and an initial x86 state, and returns a resulting x86 state; the
run function either takes n steps or stops if an irrecoverable
error is encountered, whichever comes first.

Our current modeling focus is on the 64-bit mode of Intel’s
IA-32e architecture (x86-64). We have a specification of all
addressing modes, 121 user-level instructions (223 opcodes),
IA-32e paging, and FS/GS-based segmentation. Our x86 ISA
model is around 40,000 lines of code, which includes proofs
about the specification, but does not include our tools for
binary analysis. The model can execute most user-level integer
programs emitted by the GCC/LLVM compiler — notable
exceptions are media and floating-point instructions, which we
plan to model in the near future.

Our model can be used in either a supervisor-level or
programmer-level mode of operation. The supervisor-level
mode includes support for IA-32e paging. In this mode,
our memory model characterizes a 252-byte physical address
space, which is the largest address space provided by modern
x86 implementations. This mode can be used to simulate
and verify system software. The programmer-level mode of
our model attempts to provide the same environment to a
programmer for reasoning as is provided by an OS for pro-
gramming; it allows the verification of an application program
while assuming that services like paging and I/O operations are
provided reliably by the operating system. In this mode, our
memory model supports the 64-bit linear addresses specified
for IA-32e machines.

The simulation speed of our model in programmer-level
mode is ∼3.3 million instructions/second and in supervisor-
level mode, with a two-level page table configuration, is
∼920,000 instructions/second on a machine with a 3.50GHz
Intel Xeon E31280 CPU. Achieving high simulation speeds
facilitates the use of our formal processor model as an
instruction-set simulator, which enables its validation against
the real machine, as we discuss below. It is a challenge to
support efficiency for both reasoning and simulation; specifi-
cation functions written to maximize simulation efficiency, like
those for our memory model specification [3], can be hard to
reason about and those written to enable simpler reasoning can
run slowly. We use abstraction techniques [4] to attain both
reasoning and simulation efficiency. For the rest of this paper,
we focus on the programmer-level mode of our x86 model.

ISA Model Validation: How can we trust that our model
faithfully represents the x86 ISA? A benefit of using ACL2
to develop our x86 model is that its efficient executability

enables validation of the model against the real machine
using co-simulation. We compile high-level programs using
GCC/LLVM and compare each run of a resulting x86 program
on the real machine to the corresponding run on our x86 model.
Our model is capable of running unmodified x86 machine-
code programs because we do not simplify the semantics of
x86 instructions. For example, we have successfully simu-
lated a contemporary SAT solver on our x86 model1. When
given an instance of the SAT’09 Competition Application
benchmark (cmu-bmc-barrel6.cnf), 9,142,833,444 machine in-
structions are executed at run-time for the solver to run to
completion. On all these instructions, our model produced
exactly the same effects on the memory and registers as those
produced by the real machine.

Our model validation framework uses GDB and Intel’s
dynamic instrumentation library, Pin [5], to extract the machine
state while running programs on the processor. In the execution
mode of the x86 model, the framework uses our own dynamic
instrumentation library, written entirely in ACL2, to extract our
model’s state so that it can be compared to the real machine
state at a desired level of granularity, be it on a per-instruction
or a per-breakpoint basis. This framework is largely automated
— it spawns off the GDB/Pin process on the real machine,
uses the information captured by GDB/Pin to initialize our
x86 model appropriately, runs the model in its execution
mode on concrete data, and produces a report containing
the differences observed, if any, between the real machine
state and the model’s state. This automated and easy-to-use
framework makes it convenient to run many co-simulations,
thereby facilitating fast and thorough model validation.

We have invested several person years of work in our
x86 model. We use the Intel manuals [6] as specification
documents; ambiguities are resolved by running tests on the
real processor and by consulting with processor architects. Our
model is a formal specification for the x86 ISA, and it can also
serve as the target specification for RTL design verification.

III. SYSTEM CALL MODEL

User-level programs, either directly or through higher-
level interfaces provided in libraries, often make system calls
to the underlying operating system to request services such
as file I/O and memory management. Though the x86-64
architecture provides other instructions to invoke and return
from system calls, we focus on syscall and sysret;
these instructions are the most common and efficient interface
between the kernel and a user application. The syscall
instruction is used by user-level code to call system-level
procedures at the highest privilege level by loading the rip
with the appropriate address from a model-specific register.
The companion instruction, sysret, returns control from
the system procedures to user-level code at the application
privilege level. These instructions allow fast privilege-level
transitions during the system call invocation and return process
by keeping all the information required for the transition in
general-purpose and model-specific registers, thereby avoiding
the overhead of table references in memory.

1This SAT solver was developed by Marijn J. H. Heule; its performance is
comparable to those of state-of-the-art solvers.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 92



From the perspective of a user-level program, system calls
are non-deterministic — different runs can yield different
results on the same machine. Since our x86 model serves
both as an executable instruction-set simulator and a formal
specification that is used to do proofs about machine code, we
need to be able to do the following:

1) Efficiently simulate runs of a program with system
calls on concrete data, and

2) Formally reason about such a program given sym-
bolic data.

Ideally, to accomplish both these tasks, modeling enough
features of the x86 would allow an operating system to be
loaded on the model to service system calls. Consequently,
we could both simulate and reason about system calls due to
the executable and formal nature of our ACL2-based model.
However, loading a modern OS on a processor model is non-
trivial; the added complexity of the low-level interaction of the
OS with the processor would not only make reasoning about
user-level programs harder, but also slow down the simulation
speed of concrete program runs.

Instead, for simulation of system calls, we set up the
execution mode of our x86 model to interact directly with the
underlying OS. ACL2 provides a mechanism [7] for allowing
arbitrary Common Lisp code to be defined in raw Lisp,
outside ACL2. The system call service is provided by raw Lisp
functions to obtain “real” results from the OS [8]. Simulation
of all instructions other than syscall happens within ACL2
(and hence, Lisp). Note that since we are abstracting away
the system-level procedures that are invoked by the OS when
a system call is made, we do not need to make a similar
arrangement for the sysret instruction.

These raw Lisp functions should not be used for reasoning
since they are impure: they are not axiomatized logically,
and indeed, are not even functions in the logical sense since
repeating the same call can yield different results. It is critical
for our framework to prohibit proofs of theorems that state that
some system call returns a specific value. If that were the case,
then due to the non-determinism inherent in system calls, we
might be able to prove that the same system call returns some
other value in a different ACL2 session. Or perhaps worse yet,
we could prove an instance of x 6= x by instantiating x with a
term that invokes the system call. Another disturbing scenario
would be when such theorems contradict results observed in a
program run simulation.

Thus, for reasoning about machine-code programs we
use the logical mode of our model, which incorporates into
the state an environment field to represent the part of the
external world that affects or is affected by system calls. To
reason about a system call’s effects, we simply consult that
env field. A well-formed env field contains sub-fields that
describe a subset of the file system and an oracle that provides
information that, though a part of the real environment, cannot
be inferred from our model of the file system. An example of
such information is the file descriptor of a file to be opened;
an OS assigns the file descriptor depending on the number of
files already opened for a particular process at the time the
open system call is made.

The contents of env can be abstract. For example, to
verify a program like grep that searches for occurrences of

a pattern in an input file, the pattern can be specified as an
arbitrary string and the file can be specified as an arbitrary
file in the file system (or not, if we wish to reason about the
case when the file does not exist). This ability to reason about
arbitrary elements in the environment is precisely what makes
reasoning about non-determinism possible. Of course, it is also
possible to reason about specific elements in the environment,
e.g., grep with a specific pattern on a specific file, by simply
initializing the env field with these elements.

Consider two runs of our model with the same initial x86
state, where one is in execution mode with real environment
ENV and the other is in logical mode with environment field
env. We say that env corresponds to environment ENV if
the execution of system calls produces the same results in the
logical mode as in the execution mode.

The execution mode does not unduly impact the logical
mode, since the raw Lisp functions do not influence the
reasoning process. Conversely, the env field does not interfere
with the impure functions in the execution mode. However,
the logical and execution modes are far from completely
independent, as noted by the following three properties.

(L) For reasoning, all the functions in the logical mode of
the x86 model are pure.

(E) The execution mode allows the use of raw Lisp func-
tions that directly interact with the underlying OS to
provide system call service. Note that the logical mode
and execution mode are identical for all instructions
except syscall — all other instructions have the
same definitions in both these modes.

(C) The following connection exists between the logical
mode and the execution mode. Let x0 be an x86
state. Suppose in the execution mode, the evaluation
of (run x0) returns x1 and updates the real en-
vironment from ENV to ENV’. Then, the following
is true for the logical mode: if env corresponds to
ENV, and x0’ refers to x0 augmented with env, then
the evaluation of (run x0’) in the logical mode
produces x1 augmented with env’, for some env’
corresponding to ENV’.

See Figure 1 for an illustration of a program run in both
the execution and logical modes. We discuss property (C) in
some detail later in this section. Due to property (C), we know
that evaluation results produced by raw Lisp functions will
not be contradicted by theorems proved about system calls;
in fact, each program run in the execution mode produces
a theorem under a hypothesis about the well-formedness of
the environment in the logical mode. Thus, observations made
while performing simulation in the execution mode hold in the
logical mode as well. Our method facilitates the maintenance
of an integrated software base for the logical and execution
modes of the x86 model.

Our framework makes reasoning about non-deterministic
computations in programs tractable. As we will see in Sec-
tion V, the proof of correctness of a program is not complicated
by the presence of system calls. We have used this approach
to model and implement the following system calls: read,
write, open, close, lseek, dup, link, and unlink.
We support the simulation of these system calls on both

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 93



Execution mode:

x0 x1

ENV’ENV

run r
run r

Logical mode:

x0

env
x1

env’

Figure 1. Illustration of a run in the execution mode (left) and in the logical mode (right). A run, r, from an initial state x0 in the execution mode gives a
final state x1, and the environment ENV on the real machine transitions to ENV’. In the logical mode, env corresponds to ENV, and r produces the same final
state, x1, augmented with env’, which corresponds to ENV’.

Linux and Darwin systems. Our approach can be used to
handle various sources of non-determinism, other than just
system calls, that arise in user-level programs. One such
example is the rdrand instruction, which is used to provide
cryptographically secure random numbers to applications.

System Call Model Validation: For all instructions but
syscall, comparing the real machine state to the model
state extracted in the execution mode validates the logical
mode as well since these modes are identical. However, for the
syscall instruction, the execution and logical modes of the
x86 model consist of different functions, and are thus distinct.
Consequently, two validation tasks need to be performed for
the syscall instruction:

1. Validate the execution mode of the x86 model against
the real system, i.e., processor plus system call service
provided by the operating system, and

2. Validate the execution mode against the logical mode
of the x86 model.

We accomplish the first validation task using our model
validation framework, as discussed in Section II. Since the raw
Lisp functions supporting the execution mode of the syscall
instruction interact with the underlying OS and hence, pass on
the results of the real machine to our framework, the only
functions of the execution mode that need to be validated are
those that marshal the input arguments and return values of
these raw Lisp functions, and those that capture the effects of
a return from the system call. The latter accounts for the effects
of the sysret instruction as well; for example, sysret
always clears the RF and VM flags, and the programmer’s view
of the processor after a return from a system call should also
depict these flags as cleared.

The second validation task is critical to ensure the property
(C) stated earlier. The logical mode for syscall can be
thought of as the specification for its execution mode. The
specification functions supporting the logical mode are written
in accordance with the man pages of the system calls and their
more detailed descriptions found elsewhere [9]. We validate
the execution mode against the logical mode by performing
extensive code reviews, and by comparing program runs in
the execution mode to corresponding runs in the logical mode.
We illustrate this process by a short example. Consider the
following five x86 instructions. This snippet of an assembly
program makes a read system call to obtain one byte from
a file with descriptor equal to 0, usually the standard input.
The arguments needed by the read system call are loaded into

appropriate registers, as dictated by the x86-64 Application
Binary Interface [10]. The rax register contains the Linux read
system call number, the rdi register contains a file descriptor,
the rsi register contains the address of the memory buffer
where the read bytes will be written, and the rdx register
contains the number of bytes to be read.

mov $0x0,%rax /* Syscall number */
xor %rdi,%rdi /* File descriptor */
mov -0x20(%rbp),%rsi /* Buffer address */
mov $0x1,%rdx /* Number of bytes */
syscall

In the execution mode, we initialize our x86 model to
reflect the state of the real machine when rip points to the
address of the first mov instruction. We set up the model
to make five steps, i.e., run this snippet. Then, the raw Lisp
function for the read system call collects the user’s input.

In the logical mode, we initialize the environment field env
so that it corresponds to the real environment. As such, the
contents of the standard input in the env field should contain
the user input that was collected in the corresponding run in
the execution mode. After setting up the rest of the fields of the
x86 state to be exactly the same as those of the initial state in
the execution mode, we run the model to simulate these five
instructions. A comparison of the final state obtained in the
logical mode and execution mode allows validation of these
modes against each other.

IV. PROGRAM: SIMPLE WORD COUNT

We analyze the machine code corresponding to a sim-
ple word count program taken from “The C Programming
Language” by Kernighan and Ritchie [11]. This C program
is a bare-bones version of the wc program found on Linux
systems. We use this program as a case study to assess the
capability of our model to simulate and reason efficiently about
programs that make system calls. GCC compilation generated
50 machine instructions (166 bytes) — 17 instructions for
the gc procedure, including the syscall instruction, and
36 instructions for the main sub-routine.

The program reads a character from the standard input until
the end of input (which is denoted by the character #), each
time incrementing the character counter nc. If the character is
a newline, then the newline counter nl is also incremented.
The word counter nw is incremented at the beginning of every
word, i.e., when state transitions from OUT to IN.

#define IN 1 /* inside a word */
#define OUT 0 /* outside a word */

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 94



#define EOF '#' /* EOF character */
#include <stdio.h>
int gc(void) {

char buf[1];
int n;
__asm__ volatile

(
"mov $0x0, %%rax\n\t"
"xor %%rdi, %%rdi\n\t"
"mov %1, %%rsi\n\t"
"mov $0x1, %%rdx\n\t"
"syscall"
: "=a"(n)
: "g"(buf)
: "%rdi", "%rsi", "%rdx");

return (unsigned char) buf[0];
}
/* count lines, words, characters in input */
int main () {

int c, nl, nw, nc, state;
state = OUT;
nl = nw = nc = 0;
while ((c = gc()) != EOF) {

++nc;
if (c == '\n')
++nl;

if (c == ' ' || c == '\n' || c == '\t')
state = OUT;

else if (state == OUT) {
state = IN;
++nw;

}
}
return 0;

}

The original program from Kernighan and Ritchie’s book
used the C standard library (glibc) function getchar instead
of our function gc. The machine code corresponding to
getchar used SIMD (AVX) instructions in some places
to speed up execution. Since we do not yet support SIMD
instructions in our model, we chose to write gc as our own
version of getchar. The function gc can be thought of as an
inefficient, unbuffered getchar. Every call of gc attempts
to read one byte from the standard input and stores it in a
memory buffer. An alternative to defining gc could be to use
a portable and lightweight standard library like newlib [12]
instead of glibc.

Before reasoning about the entire program in the logical
mode of our model, we ran simulations in the execution mode.
The program behaved as expected on our model, thereby
providing confidence that our model faithfully emulates a real
x86 system for the instructions of this program.

V. FUNCTIONAL CORRECTNESS OF SIMPLE WORD
COUNT MACHINE-CODE PROGRAM

In this section, we discuss the verification of the machine-
code program produced by running the GCC compiler on our
example program. This machine-code program is structurally
quite similar to its C source; in particular, it has a loop that
begins with a call to the gc sub-routine, which makes a
system call. The program variables nc, nl, nw, and state
are allocated on the stack in consecutive memory locations.

We apply a traditional theorem-proving approach to pro-
gram verification, since our previous automatic approach using
bit-blasting [13] is limited in its handling of loops and large
programs. We formally analyze this program using the Boyer-
Moore clock function method [14], [15]. We briefly describe
this method here. Given a clock function clock that specifies
the number of steps needed for a program to run to completion,
the following theorem states the total correctness of a program:
if x is an x86 state satisfying specified pre-conditions, then the
final state run(clock(x),x) satisfies the specified post-conditions.
It is the user’s responsibility to write these clock functions;
there is ongoing research to automate this task in ACL2 [16],
comparable to previous work for HOL4 [17], [18].

∀x : pre-conditions(x) =⇒ final-state(run(clock(x), x)) ∧
post-conditions(x, run(clock(x), x))

How can we state functional correctness for our program?
We choose to write a trio of simple ACL2 specification
functions that compute the character, line, and word counts of
a string, respectively. Our post-condition asserts that the values
returned by these three specification functions on standard
input are found in the expected memory locations of the final
x86 state, which is obtained by running the program on our
x86 model in its logical mode.

We now outline the proof of functional correctness of
the simple word count machine-code program. The program
structure can be used as a guide to decompose the proof into
two sub-tasks — one, the verification of the initial part of
the program when all counters are initialized to 0, and two,
the verification of the loop, which begins with a call to the
gc function. We use the theorems stating correctness of these
program components to obtain the final correctness theorem.

We begin by stating the assumptions made about the env
field in the x86 state, in order to reason about the system call
that performs a read in the gc function.

1) The file descriptor corresponding to the standard
input is 0. Note that we make this assumption only
because the program itself makes this assumption.

2) The contents of the standard input should be ter-
minated by the end-of-file character (# for this
program), and thus, be non-empty. We make this
assumption because the program does not terminate
unless this end-of-file character is encountered.

The read system call has the following interface:

ssize_t read (int fd, void *buf, size_t count);

This system call tries to read count bytes from the file
pointed to by the file descriptor fd into the memory buffer
beginning at buf [19]. The read made in the gc function of
the word-count program has fd referencing the standard input,
buf pointing to a stack address, and count equal to one. The
specification of the read system call in the logical mode of our
x86 model only tells us that one byte is read from the standard
input, modeled by the env field, and written to the memory
buffer unless some error is encountered. We can not deduce the
value of this byte. This permits us to reason about our program
for all possible bytes that can be returned by one call of gc.
Various errors, like buf pointing to an illegal memory address,
are also accounted for by our system call specification.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 95



Let us first focus on the loop. The loop pre-conditions loop-
pre are as follows.

1) The x86 state is well-formed.
2) The environment assumptions hold for this x86 state.
3) The program is loaded in the memory at its expected

location.
4) The instruction pointer, rip, points to the first in-

struction of the loop.
5) The stack pointer, rsp, is within a specified range.

This guarantees that the stack does not over-write the
code during the program’s execution.

Pseudo-code for the ACL2 function loopClk is shown
below. This function is the loop’s clock function, which
computes the number of steps needed for the loop to complete.
The argument state of loopClk corresponds to the state
variable of the simple word count program, offset corre-
sponds to the position of the next character to be read from
standard input, and strBytes corresponds to the contents of
standard input in bytes. Constants like cEOF, cNL, cSpace,
cTab, cOut, and cIn denote the number of instructions that
are executed during run-time in one loop iteration, according
to which branch of the loop is taken. Thus, the function
loopClk keeps recurring till EOF is encountered; for each
recursive call, it adds the number of instructions to be executed
at run-time based on the character read.

loopClk(state,offset,strBytes):

if !(envAssumptions(offset,strBytes)) then
// No instructions are run when environment
// assumptions fail.
0

else {
// gcSpec is gc's specification function.
char = gcSpec(offset,strBytes)
if (char == EOF) then

cEOF
else {

case (char) {
newline : state = OUT

loopSteps = cNL
space : state = OUT

loopSteps = cSpace
tab : state = OUT

loopSteps = cTab
otherwise : if (state == OUT) then

state = IN
loopSteps = cOut

else
loopSteps = cIn }

return(loopSteps +
loopClk(state,(1+ offset),strBytes))

} }

Given these pre-conditions and loop clock function
loopClk, the loop correctness theorem is as follows, where
we write l to abbreviate the application of loopClk to the
appropriate values stored in the x86 state, x.

Theorem 1: ∀x : loop-pre(x) =⇒ halted(run(l, x)) ∧
post(x, run(l, x))

where x is an x86 state that satisfies the loop pre-conditions
loop-pre, post relates the trio of our specification functions to

the values in the expected memory locations of the counters
in the halted state run(l,x), and l specifies the number of steps
the entire loop takes to reach the final state, i.e., l is a value
computed by loopClk.

Proof: This theorem can be proved by strong induction
on the value l of loopClk. If l is 0, then envAssumptions
is false; thus loop-pre(x) does not hold, which proves the base
case. Otherwise the proof splits into cases according to the
character read. Let us address the case that this character is
a newline, as the other cases are analogous. By the inductive
hypothesis, we may assume the following, which is obtained
from the theorem by replacing x with run(cNL, x) and l with
(l − cNL), and noting that (l − cNL) is the the application
of loopClk to the appropriate values stored in the x86 state,
run(cNL, x).

loop-pre(run(cNL, x)) =⇒
halted(run((l − cNL), run(cNL, x))) ∧
post(run(cNL, x), run((l − cNL), run(cNL, x))) (1)

The following fact is easy to prove by definition of the run
function.

run(l, x) = run((l − cNL), run(cNL, x)) (2)

By substituting 2 into 1, we obtain:

loop-pre(run(cNL, x)) =⇒ halted(run(l, x)) ∧
post(run(cNL, x), run(l, x)) (3)

The proof of Theorem 1 follows from the induction hypothesis
if we prove the following lemmas:

L1: ∀x : loop-pre(x) =⇒ loop-pre(run(cNL, x))

L2: ∀x : loop-pre(x) =⇒ post(x, run(cNL, x))

L3: ∀x : post(x, run(cNL, x)) ∧ post(run(cNL, x), run(l, x))

=⇒ post(x, run(l, x))

The proof of L1 is conceptually simple, and we lead ACL2
to simplify expressions representing the values of components
of the state run(cNL,x) that are relevant to loop-pre, such as
its rip. The proof of L2 proceeds in the same manner. Given
our description of post as relating stack values for the counters
with our specification functions, the proof of L3 follows from
the transitivity of post.

We then prove the following theorem about the initial part
of the program, i.e., the part preceding the loop. Here, pre has
a form similar to loop-pre but with obvious differences, for
example: the rip points to the first instruction of the program
instead of to the first instruction of the loop, and the constant
i is the number of instructions required to take the program
to the beginning of the loop.

Theorem 2: ∀x : pre(x) =⇒ loop-pre(run(i, x))

The proof is similar to the proof of L1. We finally prove total
correctness for this program by using Theorems 1 and 2. Here,
c is the value computed by the clock function for the entire
program on initial state x, that is, c = i + l.

Theorem 3: ∀x : pre(x) =⇒ halted(run(c, x)) ∧
post(x, run(c, x))

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 96



Though the proof of correctness of the word-count program
is straightforward, it is worth emphasizing that it was done
on a large interpreter-based model of the x86, where the
semantic functions of instructions are, on an average, ~200
lines of ACL2. This proof makes heavy use of compositional
reasoning and would have been harder to do had we not
developed our own libraries to automate reasoning about reads
and writes made to the x86 state. We proved many lemmas
about registers, flags, etc. Here we briefly discuss one such
library that facilitates reasoning about memory accesses and
updates.

Reasoning about memory usage is challenging, simply
because memory is so large. Moreover, code and data share
the memory, which requires establishing that each write to
the stack or heap during the program’s execution does not
overwrite program and data. Verifying position-independent
code entails reasoning about disjointness of memory regions
that are specified by symbolic or computed memory addresses.
As such, a lot of tedious low-level arithmetic reasoning about
inequalities and equalities involving these symbolic addresses
is required. Our library lifts this problem to reasoning about
membership of addresses in lists instead, and list-based reason-
ing is done largely automatically. An example is the automated
proof of the disjointness of the program and the stack done in
our word-count case study. Another proof that was discharged
automatically was that the word-count program does not mod-
ify unintended regions of memory, i.e., the only writes that
occur during the program’s execution are to the stack, and the
rest of the memory is the same as it was before the execution.
This is an important theorem because it rules out one kind of
potential “evilness” of our word-count program. Other kinds of
memory guarantees, like ruling out stack smashing and buffer
overflows, can also be established using our library.

In order to facilitate re-use, our proof libraries are designed
to be as general as possible. As we verify progressively
more complicated programs, we discover new lemmas and
extend these libraries. Below is some empirical evidence that
illustrates how our libraries can reduce manual effort:

Lines of ACL2 needed to verify the word count program:
• Without the libraries: ∼20K
• With the libraries: ∼8K

∼8K lines of ACL2 might still seem excessive. However, at
least half of these lines were generated by ACL2 in response
to commands to simplify specific symbolic expressions. The
simplified expressions are large because there are many up-
dates to different components of the x86 state to symbolically
run even a small program.

VI. RELATED WORK

Machine-code verification has long been an area of active
research. As such, many formal models of contemporary
processor ISAs have been developed to enable reasoning about
machine-code [20]–[23]. Our strategy of modeling an external
environment to account for non-determinism in programs
is similar to Moore’s work [24] in ACL2 to model non-
determinism in a pedagogical multiprocessor system. There has
been considerable research on the verification of system calls
from a micro-kernel point of view [25], [26]. In this paper,
we concern ourselves with reasoning about user-level x86

programs that interact with a contemporary operating system.
Here, we mention some recent work with goals similar to ours.

Morrisett et al., while working on software fault isola-
tion [27], developed an x86 ISA specification in the Coq [28]
proof assistant that can also be used for machine-code verifica-
tion. Morrisett’s x86 specification is not directly executable; an
executable OCaml simulator has to be extracted from the x86
specifications in Coq. The resulting simulator has an execution
rate of ∼50 instructions/second; it simulates ∼10 million
instructions in 60 hours on an 2.6 GHz, 8 core Intel Xeon
machine. This work is concerned with restricting certain kinds
of computations that can be performed natively on the host
machine in order to avoid information leaks to a web browser.
It is not designed to handle the verification of general user-level
programs that employ system calls. Feng et al. [29] use the
Coq proof assistant [28] to prove the functional correctness of
machine-code on a formal model of a processor that can handle
asynchronous events like signals and interrupts. However, this
processor model is a simplified version of the x86, and does not
handle 64-bit x86 machine-code programs. Dowse et al. [30]
used the Sparkle proof assistant [31] to verify programs that
perform I/O. This verification effort is targeted at higher-level
programs, specifically lazy functional programs. Malecha et
al. [32] also verified high-level Coq programs that perform I/O.
Reps et al. [33] have developed a sophisticated system called
TSL, that can create retargetable tools for different types of
machine code analyses, especially data-flow analyses. We do
not know of a TSL-created tool that can prove whether a given
machine code program meets its specification.

VII. CONCLUSION AND FUTURE WORK

We mechanically verify user-level x86 machine-code
programs with our ACL2-based ISA model extended with a
specification of system calls. Our effort is the first mechanical
verification of a user-level x86 machine-code program that
includes the use of system calls.

Our extended model has two modes: (a) a logical mode
that formally axiomatizes an external environment to enable
reasoning about programs that include instruction-based non-
determinism and that make system calls, and (b) an execution
mode that supports program simulation by interacting with the
underlying OS to produce results just as if executing a user-
level machine-code program natively on an x86 processor with
contemporary OS support. We regularly validate the accuracy
of our x86 model using co-simulation, having already done so
for many billions of instructions.

Our approach avoids any special treatment for system calls
when proving the functional correctness of a user program.
More generally, our framework makes formal analysis of non-
determinism in programs tractable. This effort has led to
the development of ACL2 libraries that automate machine-
code verification, in particular for reasoning about memory
reads and writes. Automating such tedious reasoning activities
considerably speeds up the proof development process.

Our case study of the verification of the word count
program provides compelling evidence that there is much
more potential for automating x86 machine-code proofs in our
framework. The proof for this program was tedious; similar
kinds of theorems were needed to reason about different parts

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 97



of the program. However, these proofs were already largely
automated due to the support provided by our libraries. We
continue to develop tools to support automation in order to
make machine-code verification in our framework accessible
to those unfamiliar with formal verification of programs on
interpreter-based models.

We should note that our model of the file system does
not account for concurrent updates by external processes. Our
verification work assumes that the input being processed will
not be changed during the execution of our program; thus, our
specification states the behavior of our programs in the absence
of such concurrent updates. Exploring program correctness in
view of possible interference by other programs would require,
at the very least, a more subtle model of the environment being
provided for our verification effort.

We believe that our specification of the x86 ISA, coupled
with the ACL2 system, can facilitate regular verification of
x86 machine-code programs. To realize this goal, we would
begin by verifying various programs in standard libraries; then,
we would verify programs that make use of these standard
libraries. Such compositional methods can provide a scalable
way to prove the functional correctness of machine-code
programs.

ACKNOWLEDGMENT

We thank Marijn J. H. Heule for his invaluable feedback on
the paper. This work is supported by DARPA under contract
number N66001-10-2-4087.

REFERENCES

[1] Matt Kaufmann and Warren A. Hunt, Jr., “Towards a formal model of
the x86 ISA,” Department of Computer Science, University of Texas at
Austin, Tech. Rep. TR-12-07, May 2012.

[2] J S. Moore, “Mechanized operational semantics,” Lectures in the
Marktoberdorf Summer School (August 5-16, 2008)., Online; accessed:
January 2014. http://www.cs.utexas.edu/users/moore/publications/talks/
marktoberdorf-08/index.html.

[3] Warren A. Hunt, Jr. and Matt Kaufmann, “A formal model of a
large memory that supports efficient execution,” in Proceedings of the
12th International Conference on Formal Methods in Computer-Aided
Design (FMCAD 2012, Cambrige, UK, October 22-25).

[4] Shilpi Goel, Warren A. Hunt, Jr., and Matt Kaufmann, “Abstract stobjs
and their application to ISA modeling,” in Proceedings ACL2 2013,
EPTCS 114, 2013, pp. 54-69.

[5] Intel, “Pin: A Dynamic Binary Instrumentation Tool,” http://software.
intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool.

[6] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Man-
uals.” Order Number: 325462-048US. (September 2013). http://
download.intel.com/products/processor/manual/325462.pdf., online; ac-
cessed: January 2014.

[7] Matt Kaufmann, J S. Moore, Sandip Ray, and E. Reeber, “Integrating
external deduction tools with ACL2,” Journal of Applied Logic, vol. 7,
no. 1, pp. 3–25, Mar. 2009.

[8] CCL, “CCL Manual: Foreign Function Interface,” http://ccl.clozure.
com/manual/chapter13.html., clozure Common Lisp Manual. Online;
accessed: January 2014.

[9] Michael Kerrisk, The Linux Programming Interface. No Starch Press,
2010.

[10] Michael Matz, Jan Hubiĉka, Andreas Jaeger, and Mark Mitchell,
“System V Application Binary Interface: AMD64 Architecture Proces-
sor Supplement,” http://www.x86-64.org/documentation/abi.pdf, online;
accessed: January 2014.

[11] Brian W. Kernighan and Dennis M. Ritchie, The C Programming
Language, 2nd ed. Prentice-Hall, 1988.

[12] Newlib, “Newlib C Library,” https://sourceware.org/newlib/., online;
accessed: January 2014.

[13] Shilpi Goel and Warren A. Hunt, Jr., “Automated code proofs
on a formal model of the X86,” in Verified Software: Theories,
Tools, Experiments, ser. Lecture Notes in Computer Science,
Ernie Cohen and Andrey Rybalchenko, Ed., vol. 8164. Springer
Berlin Heidelberg, 2014, pp. 222–241. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-54108-7_12

[14] William R. Bevier, Warren A. Hunt, Jr., J S. Moore, and William D.
Young, “Special Issue on System Verification,” Journal of Automated
Reasoning, vol. 5, no. 4, pp. 409–530, 1989.

[15] Sandip Ray, Warren A. Hunt, Jr., John Matthews, and J S. Moore,
“A mechanical analysis of program verification strategies,” Journal of
Automated Reasoning, vol. 40, no. 4, pp. 245–269, May 2008.

[16] J S. Moore, “Code Walker Tool,” (presented as a Rump Session Talk
at the ACL2 Workshop, 2013, Laramie, Wyoming).

[17] Magnus O. Myreen, Formal Verification of Machine-code Programs.
British Computer Society., 2008.

[18] Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind, “Decom-
pilation into logic - improved,” in Formal Methods in Computer-Aided
Design (FMCAD), 2012, 2012, pp. 78–81.

[19] Linux, “read(2) - Linux manual page,” Retrieved from: http://man7.org/
linux/man-pages/man2/read.2.html., online; accessed: January 2014.

[20] Warren A. Hunt, Jr., “Microprocessor design verification,” Journal of
Automated Reasoning, vol. 5, no. 4, pp. 429–460, 1989.

[21] J S. Moore, Piton: A Mechanically Verified Assembly-level Language.
Kluwer Academic Publishers, 1996.

[22] Anthony Fox, “Directions in ISA specification,” Interactive Theorem
Proving (ITP), pp. 338–344, 2012.

[23] Ulan Degenbaev, “Formal Specification of the x86 Instruction Set
Architecture,” 2012.

[24] J S. Moore, “A mechanically checked proof of a multiprocessor result
via a uniprocessor view,” Formal Methods in System Design, vol. 14,
no. 2, pp. 213–228, 1999.

[25] Christoph Baumann, Bernhard Beckert, Holger Blasum, and Thorsten
Bormer, “Formal verification of a microkernel used in dependable soft-
ware systems,” in Computer Safety, Reliability, and Security. Springer,
2009, pp. 187–200.

[26] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick,
David Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal
Kolanski, Michael Norrish, and Others, “seL4: Formal verification of
an OS kernel,” in Proceedings of the ACM SIGOPS 22nd symposium
on Operating Systems Principles. ACM, 2009, pp. 207–220.

[27] Greg Morrisett, Gang Tan, Joseph Tassarotti, Jean-Baptiste Tristan, and
Edward Gan, “Rocksalt: Better, faster, stronger SFI for the x86,” in
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’12. ACM, 2012,
pp. 395–404. [Online]. Available: http://doi.acm.org/10.1145/2254064.
2254111

[28] Coq, “Coq proof assistant,” http://coq.inria.fr/.
[29] Xinyu Feng, Zhong Shao, Yu Guo, and Yuan Dong, “Certifying

low-level programs with hardware interrupts and preemptive threads,”
Journal of Automated Reasoning, vol. 42, no. 2, pp. 301–347, 2009.

[30] Malcolm Dowse, Andrew Butterfield, Marko van Eekelen, and Maarten
de Mol, “Towards machine-verified proofs for I/O,” Technical Re-
port 0408 in the Proceedings of Implementation and Application of
Functional Languages, 16th International Workshop, IFL’04, Lübeck,
Germany., pp. 469–480., September 8-10, 2004.

[31] Maarten De Mol, Marko Van Eekelen, and Rinus Plasmeijer, “The math-
ematical foundation of the proof assistant Sparkle,” 2007, Technical
Report ICIS-R07025, Institute for Computing and Information Sciences,
Radboud University Nijmegen, The Netherlands.

[32] Gregory Malecha, Greg Morrisett, and Ryan Wisnesky, “Trace-based
verification of imperative programs with I/O,” Journal of Symbolic
Computation,, vol. 46, no. 2, pp. 95–118., 2011.

[33] J. Lim and T. Reps, “Tsl: A system for generating abstract interpreters
and its application to machine-code analysis,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 35, no. 1, p. 4,
2013.

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 98


