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Abstract—Computing minimal (or even just small) certificates
is a central problem in automated reasoning and, in particular,
in automated formal verification. For example, Minimal Un-
satisfiable Subsets (MUSes) have a wide range of applications
in verification ranging from abstraction and generalization to
vacuity detection and more. In this paper, we study the problem
of computing minimal certificates for safety properties. In this
setting, a certificate is a set of clauses /nv such that each clause
contains initial states, and their conjunction is safe (no bad
states) and inductive. A certificate is minimal, if no subset of
Inv is safe and inductive. We propose a two-tiered approach for
computing a Minimal Safe Inductive Subset (MSIS) of Inv. The
first tier is two efficient approximation algorithms that under-
and over-approximate MSIS, respectively. The second tier is an
optimized reduction from MSIS to a sequence of computations
of Maximal Inductive Subsets (MIS). We evaluate our approach
on the HWMCC benchmarks and certificates produced by our
variant of IC3. We show that our approach is several orders of
magnitude more effective than the naive reduction of MSIS to
MIS.

I. INTRODUCTION

Computing minimal (or even just small) certificates is a
central problem in automated reasoning, and, in particular,
in Model Checking. For reachability, the certificates take the
form of counterexamples. It is widely believed that small
counterexamples are the key to success of Model Checking
in practice, as they increase user comprehension and provide
better fault localization. In SAT-based Bounded Model Check-
ing (BMC), the certificates for bounded safety (i.e., absence
of counterexamples bounded by a given fixed length) corre-
spond to unsatisfiable subsets. Minimal Unsatisfiable Subsets
(MUSes) have a wide range of applicability. For example,
they are a key ingredient in Proof-Based Abstraction [1],
and have also been used to improve user’s comprehension of
verification results through vacuity [2]. For Unbounded Model
Checking (or unreachability) the certificates are represented
by safe inductive invariants. A recent trend, borrowing from
the breakthroughs in Incremental Inductive Verification (such
as IMC [3], IC3 [4], and PDR [5]), is to represent such
invariants by a set of simple lemmas. In this paper, we study
the problem of efficiently minimizing the set of such lemmas,
and especially constructing a minimal safe inductive subset of
a given safe inductive invariant. We focus on the algorithmic
aspects of the problem and on empirical evaluation, and leave
exploring the numerous potential applications for future work.

Throughout the paper, we assume that all formulas are in
CNF and that a safe inductive invariant is represented by a
set of clauses Inv such that each clause contains the initial
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states, and their conjunction is invariant under the transition
relation and does not contain any bad states. The set Inv is
minimal, called Minimal Safe Inductive Invariant (MSIS), if,
in addition to being safe and inductive, no subset of Inv is
safe and inductive.

In this paper, we make the following contributions. First,
in Section III, we show that computing an MSIS is reducible
to a sequence of computations of Maximal Inductive Subset
(MIS). While this yields a simple-to-implement algorithm, we
show that it is not efficient. Second, we propose a two-tiered
algorithm. The first tier, described in Section IV, consists
of two approximation algorithms. The first algorithm under-
approximates an MSIS by identifying the necessary clauses
that are shared between all MSISs. The second, uses a se-
quence of MUS computations to over-approximate an MSIS.
While these algorithms do not guarantee minimality, they can
be used as an effective pre-processing step. The second tier,
described in Section V, consists of two alternative optimized
reductions from MSIS to MIS. The key idea is to combine
the basic MSIS to MIS reduction with some of the pre-
processing techniques to reduce the number of redundant SAT
calls in each MIS computation. Third, we evaluate all of
the algorithms on the benchmarks from the Hardware Model
Checking Competition. We show that our ultimate algorithm
that combines pre-processing and optimizations is several order
of magnitude faster than the naive approach. Furthermore, we
show that the technique is extremely effective at reducing the
size of the certificate, compared to the certificate produced by
our custom variant of IC3.

To our knowledge, the problem of computing MSIS is not
widely studied in SAT-based Model Checking (as opposed to
computing minimal counterexamples or minimal unsatisfiable
subsets). The only alternative solution is proposed by Bradley
et al. [6] in the context of FAIR algorithm, which is similar
to our base algorithm in Section III. However, we show that
it does not scale in our context. On the other hand, we
believe that efficient algorithms for computing MSIS are just
as important as efficient algorithms for computing minimal
unsatisfiable subsets, and they are necessary for extending
many of the applications (in particular vacuity and abstraction)
from BMC to Unbounded Model Checking. We believe that
our work lays the foundation for numerous applications of
small safety certificates in SAT-based Model Checking.

II. PRELIMINARIES

Let V be a set of variables. A literal is either a variable
b €V or its negation —b. A clause is a disjunction of literals.
A Boolean formula in Conjunctive Normal Form (CNF) is a
conjunction of clauses. It is often convenient to treat a clause
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Input: P = (Init, Tr, Bad), CNF L
Output: Inv C L the MIS of £ relative to P
1 Inv— L

2 forever do
3 let R={deInv|(InvATr)=d}

4 | if R # () then
5 | Inv — Inv\ R
Fig. 1. A generic MIS algorithm.

as a set of literals, and a CNF as a set of clauses. For example,
given a CNF formula F', a clause ¢ and a literal ¢, we write
{ € ¢ to mean that ¢ occurs in ¢, and ¢ € F' to mean that ¢
occurs in F.

A variable assignment is a map o : V — {T,.Ll} that
assigns T or L to every variable in V. A clause c is satisfied
by an assignment o if o(¢) = T for a literal £ € c. A CNF
formula I’ is satisfied by o if o satisfies every clause in F'. A
CNF formula is SAT if there exists an assignment that satisfies
it and is UNSAT otherwise.

A SAT-solver is a complete decision procedure for propo-
sitional formulas in CNF. We assume that the reader is familiar
with the basic interface of an incremental solver. We use the
following APL: (a) Sat_Add(y) adds clauses corresponding
to the formula ¢ to the solver; (b) Sat_Checkpoint() saves
the current state of the solver; (c) Sat_Rollback() restores
the solver to the previously saved state.

Let F' be an UNSAT CNF formula. A minimal unsatisfiable
subset (MUS) of F is a subset of clauses U C F' such that
U is UNSAT, and for every clause ¢ € U, U \ {c} is SAT.
There are many efficient algorithms for computing an MUS
[71-[9]. In the paper, we write Sat_Mus(F') for a call to
an unspecified MUS algorithm. We assume that the MUS is
always computed relative to the clauses already added to the
solver using Sat_Add.

Let V be a set of variables and V' = {v’ | v € V}. A safety
verification problem is a tuple P = (Init, Tr, Bad), where
Init(V) and Bad(V) are formulas with free variables in V
denoting initial and bad states, respectively, and Tr(V, V') is
a formula with free variables in VU )’ denoting the transition
relation. Without loss of generality, we assume that Init and
Tr are in CNF, and that Bad is a single literal.

The verification problem P is SAT (or UNSAFE) iff there
exists a natural number N such that the following formula is
SAT:

N-1

Init(T) A < A Tr(ﬁi,ﬁm)) A Bad(@,) (1)

=0

P is UNSAT (or SAFE) iff there exists a formula Inv(V),
called a safe invariant, that satisfies the following conditions:

Init(v) = Inv(?v) Inv(0) A Tr(v,7") = Inv(v")  (2)
Inv(¥) = = Bad (V) 3)
A formula Inv that satisfies (2) is called an invariant, while

a formula Inv that satisfies (3) is called safe. Without loss of
generality, we assume that ~Bad € Inv.

Input: (Init, Tr, Bad), safe inductive invariant Inv,
Output: A minimal safe inductive subset Inv C Inv,

1 Inv «— Inv, ; W «— Inv,

2 while W # ) do

3 ¢ « a clause from W; W «— W\ {c}
4 X «— M1S((Init, Tr, Bad), Inv \ {c})
5 if (X = —Bad) then Inv — X

Fig. 2. A naive MSIS algorithm for Minimal Safe Inductive Subset.

Throughout the paper, we fix a problem P =
(Init, Tr, Bad). Let £ be a formula in CNE. A maximal
inductive subset (MIS) of L relative to P is the largest subset
Inv C L that satisfies (2). There are several algorithms for
computing MIS [10]-[12]. A generic MIS algorithm is shown
in Fig. 1, in which we first set Inv to £, and then we repeatedly
remove those clauses R C Inwv that fail to be inductive relative
to Inv. We write MIS(L) for a call to an MIS algorithm.

III. MINIMAL SAFE INDUCTIVE SUBSET

Fix a safety verification problem P = (Init, Tr, Bad), and
let Inv be a safe inductive invariant of P in CNF. A subset
of clauses S C Inv is called a safe inductive subset of Inv
relative to P if S is inductive and safe. S is minimal if any
subset of S is either not safe or not inductive. In this section,
we give a basic algorithm to compute a minimal safe inductive
subset (MSIS) of a safe inductive invariant in CNF.

The algorithm is shown in Fig. 2. It works by a repeated
application of the MIS algorithm. The input is a safety problem
and a safe inductive invariant Inv,. The algorithm keeps a
work-set W of yet unprocessed elements of Inv,. In each
iteration of the loop, a clause ¢ € W from the work-set
(line 3) is removed, and an MIS algorithm is used to compute
the maximal inductive subset X of Inv \ {c} (line 4). If
X 1is also safe, then X represents a smaller safe inductive
invariant of Inv (not containing c and possibly some additional
clauses), and so Inv is replaced by X (line 5). Otherwise, ¢
must belong to an MSIS of Inv,. The algorithm terminates
when there are no more unprocessed clauses, at which point
we claim that Inv is an MSIS of Inv,. The fact that Inv
remains safe follows from the fact that the initial invariant
Inv, was safe and that each update of Inv maintains that. For
the sake of contradiction, suppose that Inv is not minimal, i.e.
that there is a minimal safe inductive invariant Inv,, C Inv.
Take any clause ¢ € Inv \ Inv,,. Consider the iteration of the
loop corresponding to the removal of ¢ from W and let Inv;
represent Inv on that iteration. Since ¢ was not removed from
Inv,, the maximal inductive subset of Inv; \ {c} is not safe.
On the other hand, Inv,, is a safe inductive subset of Inv\ {c}
and hence of Inv; \ {c}, leading to a desired contradiction.

While this naive algorithm is simple, it is not efficient. In
our experience, the calls to MIS are the bottleneck. Further-
more, the algorithm makes a lot of redundant calls because it
does not take into account the dependency between clauses.
Often, the inductive clauses occur in a group such that re-
moving any one of the clauses makes the MIS of the result
unsafe. In the rest of the paper, we propose two significant im-
provements. First, in Section IV, we give efficient algorithms
to under- and over-approximate MSIS. While these algorithms

ISBN: 978-0-9835678-4-4. Copyright owned jointly by the authors and FMCAD Inc. 116



Input: (Init, Tr, Bad), Inv, N, C Inv s.t. = Bad € N,
Output: safe necessary set A s.t. N, C N C Inw

1y (/\CENO C) A (/\celnv\./\/o Qe < C) A
2 (Zcélnv\NO e < 1) AT
3 Sat_Add(p)
a4 N — Ny W — N,
s while W # () do
6 d — a clause from W; W — W\ {d}
7 while p A —d’ is SAT (with model M) do
8 let ¢ € Inv \ N be a clause s.t. M |= (a. = 0)
9 Sat_add(a.)
10 N —NU{c}; W —WuU{c}
Fig. 3. NEC algorithm.

do not necessarily compute a minimal set, they are used as
effective pre-processing steps. Second, in Section V, we give
a more efficient variant of MSIS that attempts to minimize
the amount of wasted work in each iteration and show how to
combine it with the over- and under-approximating algorithms.
Our results in Section VI show that this achieves orders of
magnitude improvements in performance.

IV. APPROXIMATING SIS

In this section, we present two algorithms to approximate
a MSIS of a given inductive invariant Inv. The first algorithm,
called NEC, under-approximates an MSIS by identifying a
set of clauses that must be included in any safe inductive
subset. The second algorithm, called FEAS, over-approximates
an MSIS by removing clauses that do not belong to some
SIS. Throughout the section, we fix a verification problem
P = (Init, Tr, Bad) and let Inv be a safe inductive invariant
of P.

A. Necessary Under-Approximation

A clause c € Inv is called safe necessary (or necessary for
short) if c is included in every MSIS of Inv. While computing
all necessary clauses is expensive, they can be approximated
by the set NEC' defined as the smallest subset of Inv that
satisfies the following recursive definition:

—Bad € NEC
Ve € Inv,d € NEC - (Inv\ {c} N\dANTr # d') = c € NEC

That is, NEC contains the —=Bad clause, and all clauses that
are necessary to ensure that other clauses in NEC' remain
inductive. It is easy to show by induction that if a clause
¢ € NEC then c is safe necessary. However, NEC does
not contain all necessary clauses. For example, consider the
problem P, = (Inity, Tr1, Bady) and Inv;, where

Inity =Invi =z Ay Az 4
Tri=2'=yAy =xAZ =2Vy 3)
Bad, = —z (6)

Inv, is a MSIS of itself. Thus, all of its clauses are necessary.
However, NEC| = {z} because

cAzATr =2 yANzATry =72

Input: (Init, Tr, Bad), Inv,, N' C Inv, s.t. =~Bad € N
Output: A safe inductive set Inv s.t. N C Inv C Inv,

Inv =N, W« N

while W # ) do
Sat_Checkpoint()
o Inv ATr A (V ey )
Sat_Add(yp)
W «— Sat_Mus(Inv, \ Inv)
Inv — Inv UW
Sat_Rollback()

R TR N OO C R

Fig. 4. FEAS algorithm.

da

The set NEC' can be computed efficiently using an incre-
mental SAT solver, as shown in the algorithm in Fig. 3. The
algorithm takes as input a verification problem, an inductive
invariant Inv, and a starting subset A\, of Inv of safe necessary
clauses. We require that —Bad is in N, but it is possible for
N, to include additional clauses as well (the value of this will
become clear in Section V-C). The output of the algorithm is
a possibly enlarged safe necessary subset N of Inwv.

The algorithm starts by creating a Boolean formula ¢
(line 1) consisting of the following components:

e The clauses ¢ € N,

e For each clause ¢ € Inv \J\fo, we introduce a new variable
a. and clauses for ¢ < a. (so that c is satisfied if and
only if a. evaluates to 1).

e Clauses for the at-most-one constraint over the negations
of the variables a.. In practice, we implement such
constraints using a sequential counter construction [13].

e The transition relation clauses 77.

It maintains a work-set of yet unprocessed elements of N
in W. In each iteration of the outermost loop (line 5), a
clause d € N is selected and tested using the SAT query
shown on line 7. Note that —d’ is passed via assumptions
interface. Suppose that this query is satisfiable. We claim
that in the satisfying assignment exactly one of the variables
a. is assigned to 0. Indeed, since Inv A Tr = d’, not all
a. can be 0. On the other hand, assigning more than one
a. to 0 is prohibited by the at-most-one constraint. Letting
¢ € Inv \ N be the corresponding clause, we obtain that
Inv\ {c} Nd NTr # d', and c can be added to NEC. This
is accomplished on lines 8-10 by marking c as necessary and
permanently setting a. to 1. The algorithm terminates when all
of the necessary clauses have been processed. The algorithm
makes at most 2|JA| SAT queries: one satisfiable query for
each new clause in A and one unsatisfiable query for each
clause in V.

B. Feasible Over-Approximation

Given two subsets C, D C Inv, D is inductively supported
(supported for short) by C iff C'is a set such that CADATr =
D’. That is, D is inductive relative to C. If D is supported
by C, then C inductively supports D. Given a safe inductive
invariant Inwv,, it is possible construct a SIS Inv of Inv, by
first adding —Bad to Inv, and then, repeatedly, adding to Inv
supporting clauses of Inv until fix-point. Note that the fix-point
always exists. In the worst case, Inv = Inv,.
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An optimized implementation of this idea is shown in
Fig. 4. In addition to Inv, we maintain a work-set WW C Inv of
clauses which are not yet supported. On line 1, we initialize
both Inv and W to N (which includes —=Bad and possibly
some additional clauses as well). Let us consider one iteration
of the loop (lines 3-8). Our goal is to support W by including
in Inv as few additional clauses as possible and we achieve it
by a reduction to Sat_Mus. Let o = InvATrA=(V ¢y, =€)
Since W can be supported by including all of the clauses in
Invg \ Inv, the formula (Invg \ Inv) A @ is unsatisfiable. Thus,
the set of clauses required to support ¥V can be computed
as Sat_Mus(Invg \ Inv) (with respect to ¢). After this set
is found, we include it in Inv (line 7) and by induction this
set represents exactly the set of clauses of Inv not known
to be supported. If empty, then Inv is already a SIS, and the
algorithm terminates. The algorithm makes at most | F’| queries
to Sat_Mus (and much fewer in practice).

We remark that even though we always choose a minimal
set of clauses to be added to Inwv, the overall algorithm does not
necessary produce a MSIS. We illustrate this using the follow-
ing example. Consider the problem P, = (Inits, Tro, Bads)
and Invs, where

Inito =Invg =x ANy Az @)
Tro=a'=yAy =yAz =z Vy 3)
Bad = -z ©)

It is easy to see that {z} is not inductive, but can be
supported by either z or y. Suppose that z is chosen and
is included to F. Since {x} itself is not supported, the next
iteration will include y as well, ending up with F' = Invs.
However, the MSIS of Invs is {y, z}.

We conclude this section with several observations on the
interaction between NEC and FEAS algorithms. First, we have
found that running FEAS after NEC produces tighter over-
approximations and takes less time on average then running
FEAS alone. This can be explained, as illustrated by the exam-
ple above, by the fact that FEAS heavily depends on the order
in which clauses are added to Inv. On the other hand, NEC
marks the necessary clauses that must be eventually included in
any SIS. Thus, FEAS makes better choices when started with
those clauses upfront and is faster on average. Second, for a
similar reason, we have found that the effort spent on finding a
minimal set YV to be incrementally added to Inv also pays off
— both in terms of the quality of the final over-approximation
and the time spent by the algorithm. Finally, Bradley et al. [6]
suggest to over-approximate a SIS by computing a “global”
unsatisfable core of Inv, ATr A —Inv! by minimizing the set
of clauses of Inv, required for unsatisfiability. We have not
found this approach useful, even with the MUS version of the
computation. In fact, on our benchmarks it seems that there
are large sets of clauses which can be removed from Inv, but
which are required to support themselves. In such a case, the
global approach keeps these clauses in the over-approximation,
while the iterative approach has a good chance for removing
them.

V. MINIMAL INDUCTIVE SAFE INVARIANT

In this section, we present two algorithms for finding
a minimal inductive safe subset of a given safe inductive

Input: (Init, Tr, Bad), Inv,, N, C Inv, s.t.
—Bad € N,
Output: An MSIS Inv C Inv,

1 Inv — Ny ;s W — Inv, \ N,
2 while W # () do

3 c <« a clause from W
4 W—W\{c};U W
5 forever do
6 let R={dec InvUl | (Ino N\UNTr)# d'}
7 if R = () then
8 W «— U ; break
9 else if RN Inv # () then
10 | Inv — Inv U {c} ; break
u else U —U\R
Fig. 5. An optimized SIS algorithm (OptMSIS).

invariant Inv. Our first algorithm (Section V-A) is a simple
yet powerful optimization of the basic algorithm from Fig. 2
which identifies the necessary clauses as soon as possible.
Our second algorithm (Section V-B) additionally exploits the
support dependency between different clauses in a MSIS
and avoids performing redundant computations as much as
possible.

A. Optimized MSIS algorithm

The OptMSIS algorithm is shown in Fig. 5. As before,
the input is a verification problem, an initial safe inductive
invariant Inv,, and a subset A, of safe necessary clauses of
Inv,. The output is a minimal safe inductive invariant Inv.
We maintain two sets of clauses Inv and VW such that the
while-loop satisfies the following invariants: (1) Inv U W is
a safe inductive invariant, and (2) Inv is safe necessary for
Inv UW. Initially, Inv = N, and W = Inv,, \ Inv. Intuitively,
the algorithm proceeds by selecting a clause ¢ € WV and either
deducing that c is safe necessary (adding it to Inv) or finding
a safe inductive subset of Inv A W that does not contain ¢
(shrinking W accordingly). The algorithm terminates when
W = () at which point Inv is indeed a minimal safe inductive
invariant.

In more details, on each iteration of the while-loop we
select a clause ¢ € W, remove it from )V, and denote the
resulting set by U (lines 3-4). Next, on each iteration of the
inner loop, we compute the set of clauses R C Inv UU that
are no longer supported. On one hand, if R = (), then Inv UU
remains a SIS, which means that we have succeeded in remov-
ing c (and possibly some other clauses) from }V, in which case
we update W and proceed with the next unprocessed clause
(lines 7-8). On the other hand, if RN Inv # (), then one of the
necessary clauses in Inv becomes unsupported, in which case
we conclude that ¢ must be included in any MSIS of InvUW,
mark c as necessary, and proceed with the next unprocessed
clause (lines 9-10). Finally, if all of the necessary clauses in
Inv remain supported but R # (), then the clauses in R cannot
be part of any SIS of InvUU, and so we remove these clauses
from U/ and make another iteration of the inner loop (line 11).

In our implementation, we compute the clauses in R
incrementally, making a separate SAT query for each clause
d € Inv UU. This computation is aborted as soon as a clause
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Input: (Init, Tr, Bad), Inv,, N, C Inv, s.t.
—Bad € N,
Output: An MSIS Inv C Inwv,

1 Inv — Ny ;s W — Inv, \ N,
2 while W # () do

3 ¢ < a clause from W
s | S (e}
5 forever do
6 Suppose that S = (C1,...,Cy)
7 let R={de InvUu(W\C,) |
8 (Inv AW\ Cp)ANTr)# d'}
9 if R = () then
10 W—W\C,
11 S<—(Cl7...,Cn,1>
12 if S is empty then break
13 else if RN Inv # ) then
14 Inv — InvnUuCLU---UC,
15 W—W\(CiU---UCy)
16 break
17 else if RN C; # 0 for some i < n then
18 ‘ S<—<Cl,...,ci_1,CiU~'~UCn>
19 else
20 d « a clause from R
21 ‘ S —(Ch,...,Cp, {d})
Fig. 6. Binary Implication Graph MSIS algorithm (BigMSIS).

from Inv is added to R. Furthermore, the clauses in Inv are
checked before the remaining clauses in /. In other words, the
OptMSIS corresponds to the naive MSIS algorithm in which
(1) the safe necessary clauses are marked as soon as they are
discovered, (2) computing an MIS is aborted as soon as one of
the necessary clauses becomes unsupported, and (3) necessary
clauses are checked first. In practice, this significantly reduces
the number of SAT queries done by the algorithm.

B. B.L.G. MSIS algorithm

Our ultimate algorithm for finding MSIS exploits the
dependency of including some clauses to a SIS based on the
inclusion of other clauses. We say that a clause c is necessary
for a clause d if ¢ is included in every MSIS of Inv that
contains d. In particular, if Inv \ {c} A Tr # d’, then c is
necessary for d. From the definition, the necessary relation is
transitive: if ¢ is necessary for d and d is necessary for e, then
c is necessary for e as well.

Consider a directed graph G on the clauses of Inv so that
there is an edge from a clause ¢ € Inv to d € Inv if and only
if ¢ is necessary for d. Them, for every strongly connected
component C' of G and every MSIS Inv of Inv, either all of
the clauses of C are included in Inv, or none of the clauses
of C are included in Inv.

The BigMSIS algorithm shown in Fig. 6 makes use of
these observations by incrementally learning and exploiting the
underlying graph structure. It has the same input and output as
the OptMSIS algorithm, and similarly keeps two sets Inv and
W C Inv, such that Inv U W is safe and inductive and Inv
is safe necessary for Inv U W. In addition, we use a vector
of sets (Cy,...,C}), with the following properties: (1) The
sets C; are pairwise disjoint and contained in W; (2) For any

Input: (Init, Tr, Bad), safe inductive invariant Inv
Output: minimal safe inductive invariant Inv s.t.
—Bad € Inv C Invg

1 Inv — Invg; N« {—Bad}

2 N« NEC((Init, Tr, Bad), Inv,N)
3 Inv « FEAS((Init, Tr, Bad), Inv, N)
4 N — NEC((Init, Tr, Bad), Inv, N')
s Inv «— MSIS((Init, Tr, Bad), Inv,N')

Fig. 7. Combined MSIS algorithm.

1 < 7, any clause ¢ € C}, and any clause d € C; the clause ¢
is necessary for d. In particular, for every ¢ all of the clauses
in C; belong to the same connected component of the graph.

In the outermost while-loop of the algorithm we pick the
next unprocessed clause ¢ € WV and initialize S to consist of a
single component {c}. We always focus on the last component
C,, of S. On each iteration of the inner loop we compute the
set R of clauses that become unsupported if C,, is removed
from Inv U W. Let us analyze the possible outcomes of this
query in detail.

e (lines 9-12) The set Inv U (W \ C,,) is inductive. Since
—=Bad € Inv, it is also safe. In this case, we tighten
Inv by removing all of the clauses ¢ € (), (and focus
on C,_1, or proceed with the next unprocessed clause if
n=1).

e (lines 13-16) A safe necessary clause in Inv is no longer
supported. It follows that every clause in C; U---UC), is
safe necessary as well. In this case we update the set Inv
by including all of the clauses in .S (and proceed with the
next unprocessed clause).

o (lines 17-18) A clause d € C; is no longer supported. In
this case all of the clauses in C; U --- U C}, belong to
the same connected component, and we replace the sets
Ci,...,Cy in S by a single set C; U---U ), (and focus
on this new set).

e (lines 19-21) A clause d € W is no longer supported.
Moreover, d is not one of the clauses in S. In this case,
we add a new component Cy,1; = {d} to S (and focus
on Chpy1).

As before, in our implementation R is computed incre-
mentally. Moreover, we have found it beneficial to abort the
computation as soon as the first unsupported clause d €
Inv U (W \ C,,) is found, and executing the corresponding
branch (13-16, 17-18 or 19-21) right away. In this respect,
BigMSIS is highly customizable: we can prioritize checking
first the known necessary clauses (Inv), or the clauses already
visited (), or the clauses not yet explored.

Even though the high-level descriptions of OptMSIS and
BigMSTIS are rather similar, there is an important theoretical
difference between the two algorithms: in the worst case,
OptMSIS executes its inner-loop a quadratic number of times,
while BigMSIS executes its inner-loop only a linear number
of times. We illustrate this using the following example. Con-
sider the problem P; = (Inits, Trs, Bads) and an invariant
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Invg, where

Inits = Invg =21 A --- ANz, (10)
Trs=ax) =z, ANxh =21 AN ANzl =2, 1

(11)
Bads = —x,, (12)

Further, suppose that initially N, = {x,} = {-Bad}.
Suppose that OptMSIS picks the clause z; for removal. Then,
after one iteration of the inner loop, the clause xo will be
removed, after another iteration — the clause x3, and so on,
in total requiring n iterations to detect that =Bad is removed.
However, this only allows to deduce that x; is safe necessary
(and can be included in Inv) giving no information about the
other clauses. So OptMSIS would then proceed to remove s,
leading to yet another n — 1 iterations of the inner loop, and so
on, leading to a quadratic number of iterations. The BigMSIS
algorithm, on the other hand, requires one iteration of the inner
loop to detect that 21 cannot be removed unless x» is removed,
another iteration to detect that x5 cannot be removed unless
x3 is removed, and so on, overall requiring only n iterations
to detect that none of x1,...,z, can be removed.

C. The combined algorithm

In practice even our best MSIS algorithm is slow due to a
large number of required SAT queries. Fortunately, we achieve
a significant improvement in runtime by suitably combining
the computation of an MSIS with the the under- and over-
approximating approaches. The combined algorithm is shown
in Fig. 7. The algorithm takes as input a verification problem
and an initial safe inductive invariant Invg. In the rest of this
section, we analyze the suggested approach in detail.

e (Line 1) We mark the —Bad clause as necessary and we
set Inv to Invg.

e (Line 2) We run NEC to detect additional clauses that
must be included in any MSIS of Inv. We emphasize the
number of SAT calls performed by NEC is proportional
to the number of necessary clauses detected.

e (Line 3) We run FEAS to prune the set of clauses
in Inv. As discussed in Section IV-B, FEAS uses the
necessary clauses found NEC for better overall choices of
the algorithm.

e (Line 4) After some of the clauses were removed, we have

new opportunities to mark additional clauses as necessary,

and indeed we have found it beneficially to do so. The
second run of NEC reuses the necessary clauses found in
the first run.

(Line 5) Finally we call an MSIS algorithm.

VI. EXPERIMENTS

In this section, we present our experimental results. All
experiments were performed on a 2.0 GHz Linux-based ma-
chine with Intel Xeon E7540 processor and 4 GB of RAM.
We consider the unsatisfiable single property benchmarks from
the 2011 and 2013 Hardware Model Checking Competitions
[14], [15]. To obtain initial invariants, we preprocessed each
of the benchmarks using a combinatorial logic optimization,
and, if needed, ran (our implementation of) IC3 with 3 hours
time limit. Altogether, IC3 successfully completed verification
(and produced safe inductive invariants) of 305 benchmark

instances. We use these to evaluate the techniques presented
in this paper.

We denote by NAIVE the naive MSIS algorithm from
Fig. 2 (Section III) with the additional optimization described
by Bradley et al. [6]: the computation of the maximal in-
ductive subset of Inv \ {c} (see Fig. 1) aborts as soon
as the current subset becomes unsafe. We denote by OPT
the OptMSIS algorithm from Fig. 5 (Section V-A), and by
BIG the BigMSIS algorithm from Fig. 6 (Section V-B).
We denote by NAIVE+NFN, OPT+NFN, and BIG+NFN (re-
spectively) the combination of each of these algorithms with
preprocessing (computing under-approximations using NEC,
and over-approximations using FEAS), as described in Fig. 7
(Section V-C). We have run each of these 6 algorithms on each
of the 305 testcases with a time limit of 1 hour.

The cactus plot in Fig. 8 presents a comparison between
the algorithms. Note that preprocessing has a huge impact on
any of the three MSIS algorithms, both in terms of instances
solved and the total time (for example, NAIVE is able to
solve 258 problems without preprocessing, and 293 problems
with preprocessing). The best algorithm is BIG+NFN (solving
294 problems). The effectiveness of preprocessing is further
corroborated by the fact that on average the initial NEC pass
identifies about 70% of the final MSIS clauses as necessary;
the following FEAS pass on average over-approximates the
MSIS by only 4%; finally, after the second NEC pass, over
90% of the final MSIS clauses are marked as necessary. Thus,
the final MSIS pass has to deal with only about 10% of the
MSIS clauses on average.

We emphasize that when searching for small (and not nec-
essary minimal) inductive invariants, the preprocessing stage
alone (or, more precisely, NEC 4+ FEAS) produces an almost
optimal invariant in most cases, and as such the final MSIS
stage can be skipped. Furthermore, any of the MSIS algorithms
can be adapted to run with a resource limit, providing a safe
and inductive over-approximation in case this limit is reached
(such as the set WV in the naive MSIS algorithm, and the set
Inv UMW in the OptMSIS and BigMSIS algorithms).

The scatter plot on the left of Fig. 9 demonstrates that
BIG+NFN is 2 to 3 orders of magnitude more effective than
NAIVE, and hence represents the overall improvement of our
best algorithm over prior work. The scatter plot in the center
compares BIG and BIG+NFN, and serves to highlight that
preprocessing is a crucial technique for most of the problems.
Finally, the scatter plot on the right shows that even when
preprocessing is used, BIG is an order of magnitude better
than NAIVE. It should be noted the most of the points on the
diagonal correspond to the problems solved by preprocessing
alone.

It is also interesting to compare the number of clauses in
the MSIS with the number of clauses in the original invariant
computed by IC3. In this aspect there is very little variance
between different algorithms, so we provide the data only for
BIG+NFN, see Fig. 10. On average, the reduction is the more
pronounced the larger is the initial invariant. In fact, this says
something about IC3: even when IC3 learns a lot of invariants
(and takes a long time to solve a problem), it does not mean
that these invariants are useful for the final proof. Finally, we
note that on our benchmarks MSIS on average removes 20%
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