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Abstract—SMT solvers combine SAT reasoning with spe-
cialized theory solvers either to find a feasible solution to a
set of constraints or to prove that no such solution exists.
Linear programming (LP) solvers come from the tradition of
optimization, and are designed to find feasible solutions that are
optimal with respect to some optimization function. Typical LP
solvers are designed to solve large systems quickly using floating
point arithmetic. Because floating point arithmetic is inexact,
rounding errors can lead to incorrect results, making inexact
solvers inappropriate for direct use in theorem proving. Previous
efforts to leverage such solvers in the context of SMT have
concluded that in addition to being potentially unsound, such
solvers are too heavyweight to compete in the context of SMT. In
this paper, we describe a technique for integrating LP solvers that
improves the performance of SMT solvers without compromising
correctness. These techniques have been implemented using the
SMT solver CVC4 and the LP solver GLPK. Experiments show
that this implementation outperforms other state-of-the-art SMT
solvers on the QF LRA SMT-LIB benchmarks and is competitive
on the QF LIA benchmarks.

I. INTRODUCTION

Solvers for Satisfiability Modulo Theories (SMT) combine
the ability of fast Boolean satisfiability (SAT) solvers to find
solutions for complex propositional formulas with the ability
of specialized theory solvers to find solutions to systems of
constraints with respect to specific first order theories. SMT
solvers excel in applications that require reasoning about non-
trivial Boolean combinations of specific theory atoms.

Theory solvers for linear real and integer arithmetic are
found in nearly every modern SMT solver, and are an essential
building block for verification applications built on top of
SMT. The best-performing arithmetic theory solvers are based
on an algorithm that adapts the well-known simplex method
to the SMT setting [1]. Because of their use in verification,
SMT solvers typically use exact precision numeric represen-
tations internally in order to ensure that their calculations are
correct and do not compromise the soundness of the overall
system. For many typical SMT problems with significant
Boolean structure (such as the majority found in the SMT-
LIB benchmark library), this approach is sufficient, as the
required theory reasoning is not too complex and the numbers
involved in the internal calculations tend to stay relatively
small. Moreover, such problems require tens or hundreds
of thousands of calls to the theory solver. Thus, the theory
solver’s ability to incorporate new constraints quickly, to
rapidly detect inconsistencies, and to backtrack efficiently, are

far more important for overall efficiency than is the speed
of the internal numerical calculations. However, there do
exist problems for which this is not the case. If the internal
simplex solver receives constraints that lead to large and dense
linear systems, then using exact precision for the calculations
required for the simplex search can overwhelm the solver.

The standard simplex algorithm finds a solution that is
“best” according to some criteria. This is made mathematically
explicit by adding a linear objective function that is to be
maximized. The linear constraints combined with a linear
objective are called Linear Programs (LPs), and systems that
solve them are called LP solvers. Simplex-based LP solvers
differ from SMT solvers in several important ways, including
the following: (i) LP solvers solve only conjunctions of con-
straints - they cannot handle arbitrary Boolean combinations;
(ii) LP solvers focus on both feasibility and optimization rather
than just feasibility; (iii) LP solvers (generally) use floating
point rather than exact precision arithmetic internally; and (iv)
the product of many decades of research, modern LP solvers
incorporate highly sophisticated techniques, making them very
efficient in practice. The techniques used in LP solvers have
been extended to the problem of optimizing constraints where
all or some of the variables are required to be integers (Integer
Programming (IP) and Mixed Integer Programming (MIP)).

On challenging simplex instances, LP and MIP solvers are
considerably more efficient than the techniques used inside of
SMT solvers. However, LP and MIP solvers are not optimized
for rapid incremental calls, making them inefficient as theory
solvers for many SMT applications. Also, their use of floating
point means that they will occasionally return incorrect results.
In this paper, we show how LP and MIP solvers can be effi-
ciently and soundly incorporated into a modern SMT solver.
Our work builds on previous efforts to leverage LP solvers
for SMT but is the first to obtain significant improvements
in performance by doing so. It is also the first to attempt
integrating a MIP solver with SMT.

The rest of the paper is organized as follows. We give
an overview of relevant background on SMT and simplex in
Section II. Section III discusses our approach for integrating
an LP solver in a theory solver for linear real arithmetic,
and section IV shows how to extend this strategy to use an
MIP solver in a theory solver for linear integer arithmetic.
We conclude with section V, which reports and discusses
experimental results.
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II. BACKGROUND

The core SMT problem is to determine whether a first
order formula φ is satisfiable with respect to a fixed first
order theory T [2]. Most modern SMT solvers rely on a
DPLL(T ) framework which combines a Boolean satisfiability
(SAT) solver with decision procedures for various theories.
The SAT solver is used to find an assignment of theory
literals to truth values that is propositionally consistent with
the Boolean skeleton of φ. The theory-specific modules used
by SMT solvers are called theory solvers.

A theory solver for theory T takes as input a set Φ of theory
literals1 and determines whether Φ is consistent with respect to
T . If so, the theory solver responds with Sat and (optionally)
a model, an assignment to the free variables in Φ that makes
every formula in Φ true. If not, the theory solver responds with
Unsat together with a small (ideally minimal) subset of Φ
known to be unsatisfiable in T , called a conflict set. A conflict
set C is converted into a clause

∨
l∈C ¬l, and sent to the SAT

solver. In addition, any T -valid formula can be sent to the
SAT solver by the theory solver and such formulas are called
theory lemmas. Theory lemmas are used by theory solvers to
help direct and guide the SAT solver during its search.

The focus of this paper is a novel theory solver for
quantifier-free mixed linear integer and real arithmetic. We
assume a language that includes the usual arithmetic constants
and operators, a vector V = 〈x1 . . . xn〉 of variables,2 and
a unary predicate IsInt. We assume that atoms are of the
form (i)

∑
ci · xi ./ d where ci and d are rational constants,

./ ∈ {<,≤,=}, and xi ∈ V , or of the form (ii) IsInt(xi),
where xi ∈ V . An assignment a maps each xi ∈ V to a value
in the set R of real numbers. An assignment a satisfies an atom∑
ci · xi ./ d whenever

∑
ci · a(xi) ./ d holds and satisfies

IsInt(xi) whenever a(xi) is an integer. An atom that is
satisfied by some assignment is said to be satisfiable. We lift
the notion of satisfaction to arbitrary Boolean combinations
of atoms in the natural way. We write φ |=T β if every
assignment satisfying φ also satisfies β. We assume that V
is partitioned into a set VR of real variables and a set VZ
of integer variables. The integer-tightening of a formula Φ is
defined as φ ∧ ∧z∈VZ IsInt(z), and the real relaxation of
a formula α is obtained by replacing every application of the
IsInt predicate in α by True.3 A formula is integer-feasible
if its integer-tightening is satisfiable (and integer-infeasible
otherwise), and an assignment is called integer-compatible if
it assigns an integer to each integer variable. If a formula’s
real relaxation is satisfied by some assignment, we say it is
real-feasible (or just feasible).

We first describe the well-known approach for simplex-
based theory solvers in SMT, an approach we call Simplex
for DPLL(T ) (more details can be found in [1], [3]). The
input is a conjunction of atoms of the form

∑
ci · xi ≤ d.

1We will follow the common practice of overloading Φ to mean
∧

ϕ∈Φ ϕ
in contexts where a formula rather than a set is expected.

2For convenience, we will also use V to refer to the set {x1 . . . xn}.
3We assume that IsInt occurs only positively in input formulas.

Weak inequalities are transformed by introducing a fresh
real variable s for

∑
ci · xi and rewriting the constraint as

s =
∑
ci · xi ∧ s ≤ d. The original xi variables are called

structural while the introduced s variables are called auxiliary.
The orig function maps each auxiliary variable to its definition,
orig(s) ≡ ∑

ci · xi. Strict inequalities
∑
ci · xi < d are

rewritten as
∑
ci ·xi + δ ≤ d where δ is a small constant that

can be determined later. To properly reason in the presence
of δ, some of the internal constants are represented as special
δ-rationals , pairs 〈a, b〉 of rationals interpreted as a + b · δ.
Details on this technique can be found in [4].

After applying these transformations, the resulting con-
straints can always be written as: TV = 0∧ l ≤ V ≤ u, where
T is a matrix, and l and u are vectors of lower and upper
bounds on the variables. We use Ti to denote the i-th row of
T . We use l(x) and u(x) to denote the lower and upper bound
on a specific variable x. If x has no lower (upper) bound, then
l(x) = −∞ (u(x) = +∞). The theory solver searches for an
assignment a : V 7→ R that satisfies the constraints.

We assume T is an n × n matrix in tableau form: the
variables V are partitioned into the basic variables B and non-
basic variables N (to emphasize when a variable xi is basic,
we will write bi as a synonym for xi when xi ∈ B), and
Ti is all zeroes iff xi ∈ N . Furthermore, for each column
i such that bi ∈ B, we have Tk,i = 0 for all k 6= i and
Ti,i = −1. Thus, each nonzero row Ti of T represents a
constraint bi =

∑
xj∈N Ti,j · xj . Initially, the basic variables

are exactly the auxiliary variables.
The simplex solver works by making a series of changes to

an initial assignment a and the tableau T until the constraints
are satisfied or determined to be unsatisfiable. During this
process, T · a(V) = 0 is an invariant. To initially satisfy
this invariant, we can set a(xi) = 0 for all i. To maintain
the invariant, whenever the assignment to a non-basic variable
changes, the assignments to all dependent basic variables are
also updated. Changes to the tableau are made via pivoting.
Pivoting takes a basic variable bi and a non-basic variable xj
such that Ti,j 6= 0, and swaps them: after pivoting, xj becomes
basic and bi becomes non-basic.

Simplex for DPLL(T ) solvers modify the assignment a and
pivot the tableau T until a satisfying assignment is found or
a row conflict is detected: a basic variable bi violates one of
its bounds but none of the non-basic variables that bi depends
on can be used to fix this without violating their own bounds.
For example, suppose a(bi) > u(bi) and for all xj ∈ N with
positive coefficients in row Ti (Ti,j > 0), a(xj) = l(xj) and
for all xk ∈ N with negative coefficients in row Ti (Ti,k < 0),
a(xk) = u(xk). Then, bi ≥ a(bi) is entailed by the row and the
constraints on the non-basic variables.4 Since this contradicts
bi ≤ u(bi), the entire system of constraints is unsatisfiable,
and the following conflict set is generated:⋃
Ti,j>0

{xj ≥ l(xj)} ∪
⋃

Ti,k<0

{xk ≤ u(xk)} ∪ {bi ≤ u(bi)}.

4There is a dual case when a(bi) < l(bi).
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The current best implementations of theory solvers for
mixed linear integer and real arithmetic use a sound but
incomplete procedure that layers integer reasoning on top of
a solver for linear real arithmetic. Given a set Φ of atoms,
the real solver is first used to solve the real relaxation of
Φ. If the solver terminates, the result is either a conflict set
or an assignment a (when Φ is real-feasible). In the first
case, no additional work is necessary as a conflict set for
the real relaxation of Φ is also a conflict set for Φ. In the
second case, the assignment a is examined to see whether it
is integer-compatible. If not, more work is needed to refine
the assignment. The following branching technique can be
used to ensure that the current assignment is refined in the
next invocation of the theory solver: select a variable x ∈ VZ
whose assignment is non-integer, and then send the following
theory lemma to the SAT solver,

IsInt(x)→ (x ≤ ba(x)c ∨ x ≥ da(x)e) (1)

The SAT solver will assert one of the two new bounds on x
before reinvoking the theory solver.

Naive use of this heuristic can trigger an infinite sequence
of branches, so more sophisticated methods based on cutting
planes have been developed [5]. Consider a set Φ of assertions.
A cutting plane is a plane through the solution space of the
real relaxation of Φ that cuts off some of the non-integer-
compatible assignments. More precisely,

∑
cixi = d is a

cutting plane for Φ and H ≡ ∑
cixi ≤ d is a cut iff the

following conditions hold: (i) every assignment satisfying the
integer-tightening of Φ also satisfiesH; and (ii) at least one as-
signment satisfying the real relaxation of Φ also satisfies ¬H.5

The inequality H can be safely added to Φ without changing
any of the (integer-compatible) satisfying assignments. A cut
is always entailed by the integer-tightening of Φ and never
by the real relaxation of Φ. Cuts can be implemented using
theory lemmas, by sending the lemma Φ ⇒ H to the SAT
solver. Previous work has looked at using Gomory and Mixed
Gomory cut techniques in SMT solvers [4].

III. LEVERAGING LP SOLVERS

The first contribution of this paper is a method for lever-
aging the strengths of both SMT and LP solvers to construct
an efficient and robust theory solver for linear real arithmetic.
This idea has been explored before. Early work by Yu and
Malik [6] reports results on using an LP solver as a theory
solver for SMT, but the issue of potentially incorrect results
from the LP solver is not addressed. Faure et al. [7] integrate
several LP solvers into the Barcelogic SMT solver [8]. They
use an exact solver to lazily check the results from the LP
solver to ensure soundness. Finally, in recent work by de
Oliveira and Monniaux [9] (a continuation of the work in [10]),
extensive experiments are done using an LP solver within
OpenSMT [11]. In this work, the LP solver is called first and
the results are used to “seed” the search in the exact solver.

5Often, an additional requirement is that H is not satisfied by the current
assignment a. We will not require this here.

Thus most of the search is done by the LP solver, while the
exact solver still ensures correctness.

In each of these studies, experimental results on SMT-LIB
benchmarks show that existing SMT solvers outperform the
experimental solvers modified to use LP solvers, even if the LP
solver results are not checked for correctness. The main reason
for this is that for these benchmarks (and the applications they
represent), solving requires many related calls to the theory
solver, each of which is relatively simple. The algorithms used
in SMT solvers are optimized for this case and thus perform
better, even though they use exact arithmetic which in general
is much slower than floating point arithmetic. A solution to
this problem advocated in [7] is to build a floating-point LP
solver optimized for many, simple, related calls.

Here, we present an alternative approach. The idea is to take
the two existing algorithms as they are and use each one only
in cases when it is likely to do well. We thus use an exact
solver optimized for fast incremental checks as the primary
theory solver. However, we also instrument this solver so that
it can detect when it is starting to have difficulty, and in these
cases we have it call the LP solver.

The overall approach is given by the algorithm BALANCED-
SOLVE shown in Figure 1. First, an efficient incremental exact
solver EXACTSOLVE is called with a heuristic cap on the
number of pivots it may perform, kEX . We assume that
EXACTSOLVE returns a status c (Sat, Unsat, or Unknown).
If the exact solver returns Sat or Unsat, we are done and
return the result. Otherwise, the heuristic cap was exceeded.
In this case, the LP solver is called. We must convert the
simplex problem described by T , l, and u to an analogous
problem for the LP solver. We denote the LP analogs of the
exact data by using the ∼ annotation. They are constructed
(following [9]) as follows. For each auxiliary variable s,
the equality s = orig(s) ≡ ∑

cixi, is added to T̃ as
s̃ =

∑
float(ci) · x̃i, where the conversion function float maps

a rational to the nearest float. For each variable x̃, the bounds
l̃(x) and ũ(x) are constructed from the δ-rationals , l(x) and
u(x) by approximating δ as a small constant ε. For example,
if l(x) = 〈c, d〉, then l̃(x) becomes float(c+ ε · d).

The LP solver is invoked with its own pivot limit kLP .
If the LP solver terminates with Sat or Unsat, we retrieve
the assignment ã as well as the final set of basic variables
B̃ from the LP solver. The assignment ã is converted into
a rational assignment a′ by the IMPORTASSIGNMENT routine
(given below). The SEEDEXACT procedure takes B̃ and a′ and
tries to verify the result of the LP solver using the exact solver.
If this fails (or if the LP solver reaches its heuristic limit), the
exact precision solver is run with a final limit kFI . For final
calls to BALANCEDSOLVE (i.e. the DPLL(T ) SAT engine has
found a propositionally satisfying assignment), kFI should be
+∞. It can be less for non-final calls.

An important contribution of this paper is the procedure
shown in Figure 2. This procedure attempts to assign a rational
value to each variable that is close to the one given by
the LP solver, but biased towards values that are easy to
represent, partly because that makes them easier to calculate
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1: procedure BALANCEDSOLVE
2: c← EXACTSOLVE(kEX)
3: if c is Sat or Unsat then return c
4: Construct T̃ , l̃, ũ from T, l, u
5: 〈c̃, ã, B̃〉 ← LPSOLVE(kLP , T̃ , l̃, ũ)
6: if c̃ is Sat or Unsat then
7: a′ ← IMPORTASSIGNMENT(ã)
8: c← SEEDEXACT(a′, B̃)
9: if c is Sat or Unsat then return c

10: return EXACTSOLVE(kFI)

Fig. 1: The BALANCEDSOLVE procedure.

1: procedure IMPORTASSIGNMENT(ã)
2: for all x ∈ V do
3: r ← DIOAPPROX(ã(x), D)
4: if |r − a(x)| ≤ ε then r ← a(x)
5: if x ∈ VZ and |r − bre| ≤ ε then r ← bre
6: if r > u(x) or |r − u(x)| ≤ ε then r ← u(x)
7: else if r < l(x) or |r − l(x)| ≤ ε then r ← l(x)
8: a′(x)← r

9: return a′

Fig. 2: The IMPORTASSIGNMENT procedure.

with, but also partly because the discarded portion often
corresponds exactly to a rounding error. For each variable
x in the assignment, IMPORTASSIGNMENT first approximates
ã(x) as a rational using a technique based on continued
fraction expansion called Diophantine approximation [5]. This
technique finds the closest rational value with a denominator
less than some fixed constant integer D. Next, we check to
see if this value is within ε of the last known assignment for
x in the exact solver. If so, the last known assignment is used.
Next, if x ∈ VZ and the value is within ε of an integer z
(bre denotes the nearest integer to r), then z is used. Finally,
IMPORTASSIGNMENT examines the value with respect to l(x)
and u(x). If the value violates one of these bounds or is within
ε of a bound, then the bound is used instead.

The SEEDEXACT routine (Fig. 3) attempts to duplicate the
results from the LP solver within the exact solver. First the
procedure updates the exact solver assignment by calling
UPDATE on each non-basic variable. Next it computes the set,
B′, of variables that are non-basic in the exact solver but were
marked as basic by the LP solver. We loop until as many
variables in B′ as possible have been pivoted to become basic.
At the beginning of each iteration, we visit all the rows of T to
check for conflicts. ( [3] discusses doing this check efficiently.)
While checking for conflicts, we can also detect whether any
basic variable violates its upper or lower bound. If not, we
have a satisfying assignment and stop early. If neither check
applies, we search for a pair of variables xi, xj such that xj is
in B′ meaning it is non-basic but should be basic, and Ti,j 6= 0
and xi 6∈ B̃ meaning that xi is basic but should be non-basic.
If we can find such a pair, we pivot i and j and update the

1: procedure SEEDEXACT(a′, B̃)
2: for all x ∈ N do
3: UPDATE(x, a′(x)− a(x))
4: B′ ← N ∩ B̃
5: while B′ 6= ∅ do
6: if T has a row conflict then return Unsat
7: if all variables satisfy their bounds then return Sat
8: if ∃ i j. xj ∈ B′ ∧ xi 6∈ B̃ ∧ Ti,j 6= 0 then
9: PIVOT(i, j)

10: UPDATE(i, a′(xi)− a(xi))
11: B′ ← B′ \ {xj}
12: else return Unknown
13: return Unknown

Fig. 3: The SEEDEXACT procedure.

1: procedure INTEGERSOLVE
2: c← BALANCEDSOLVE()
3: if c is Unsat then return c
4: Construct T̃ , l̃, ũ from T, l, u
5: 〈c̃, ã, B̃, t̃〉 ← MIPSOLVE(kMIP, T̃ , l̃, ũ)
6: if c̃ is Unsat then c← REPLAY(t̃)
7: else if c̃ is Sat then
8: a′ ← IMPORTASSIGNMENT(ã)
9: c← SEEDEXACT(a′, B̃)

10: if c is Unknown then c← EXACTSOLVE(+∞)
11: if (c is Sat and a is integer-compatible) or

(c is Unsat) then return c

12: Generate a branching theory lemma using (1)
13: return Unknown

Fig. 4: The INTEGERSOLVE procedure.

assignment of xi to a′(xi). Approximations made by the LP
solver or by IMPORTASSIGNMENT mean that SEEDEXACT may
fail to detect a satisfying assignment or a conflict in which
case it returns Unknown. The SEEDEXACT procedure can
be seen as achieving a similar effect as FORCEDPIVOT in [10]
using rounds of the simplex algorithm in [1].

An alternative to verifying the LP solution would be to use
an exact external LP solver (e.g. [12]–[14]). However, the use
of an exact external solver (as well as an attempt to implement
their rather sophisticated techniques) is beyond the scope of
this work. Our goal, rather, is to make a first effort at an
efficient integration of inexact floating-point solvers within
SMT search. Integrating an exact external solver would be
an interesting direction for future work.

IV. USING MIP SOLVERS TO IMPROVE THEORY SOLVERS
FOR MIXED LINEAR INTEGER AND REAL ARITHMETIC

We show how to extend the technique from the previ-
ous section to mixed linear integer and real arithmetic. The
INTEGERSOLVE algorithm (Fig. 4) illustrates our approach.
First, the real relaxation of the problem is solved using
the BALANCEDSOLVE algorithm described above. If the real
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PROPAGATE

Ẽ ⊆ CN∪P̃ h̃ is an inequality constraint Ẽ ∪ I |=T h̃

N1 := N · 〈h̃, Ẽ〉
BRANCH

ã satisfies P̃ ∧ CN v ∈ VZ ã(v) = α α /∈ Z
N1 := N · 〈v ≤ bαc , ∅〉 ‖ N2 := N · 〈v ≥ dαe , ∅〉

Fig. 5: Derivation rules. N is the parent node, N1 and N2 its
child nodes. The symbol · denotes sequence concatenation.

relaxation is unsatisfiable, then we are done. Otherwise, we
construct an MIP instance and call an MIP solver (with a pivot
limit kMIP) to search for an integer-compatible solution. When
Unsat is returned, we also retrieve a proof tree t̃, which is
a record of the steps taken by the MIP solver, and attempt to
verify the tree by replaying its proof in the exact solver using
the REPLAY procedure described below. Otherwise, if Sat is
returned, we attempt to verify the assignment as before. If the
verification fails, we again call EXACTSOLVE to ensure that
we have a solution to the real relaxation before continuing. If
we are unable to verify that the problem is Unsat or do not
find an integer-compatible assignment, we force a branch by
generating a theory lemma of the form (1) and return.

We now show how proof trees extracted from the MIP solver
can be replayed within the exact solver. For the rest of the
section, let M be an MIP instance consisting of an LP problem
P of the form TV = 0∧l ≤ V ≤ u with the integer-tightening
constraints I ≡ ∧z∈VZ IsInt(z). Let P̃ be the approximate
version of P obtained by converting all rational constants in
P to their corresponding floating point constants.

The process that an MIP solver goes through before con-
cluding that P̃ is integer-infeasible can be described at an
abstract level as a search tree. The root node represents the
initial problem P̃ and each non-root node is derived from its
parent by adding either a cut or a branch to the problem. The
leaves of the tree represent real-infeasible problems.

Formally, we define a tree node N as a sequence of pairs
〈h̃, Ẽ〉, where h̃ is an inequality constraint and Ẽ is an
explanation, a (possibly empty) finite set, each element of
which is either some h̃′ where 〈h̃′, Ẽ′〉 appears earlier in N
or is a constraint from the initial problem P̃ . We denote by
CN the set {h̃ | 〈h̃, Ẽ〉 ∈ N}.

The root node of a proof tree is the empty sequence. Each
non-root node is the result of applying to its parent node
one of the derivation rules in Figure 5. The PROPAGATE rule
is used to record when the MIP solver adds a cut. The cut
must be entailed by some subset of constraints in the current
MIP problem. The cut and its explanation are recorded in
the child sequence. The BRANCH rule is used to record when
the MIP solver does a case split on an integer variable. This
can happen when the MIP solver has a solution ã to the
real relaxation of the current problem that is not integer-
compatible. The MIP solver chooses an integer variable v that
has been assigned a real value α and enforces the constraint
v ≤ bαc ∨ v ≥ dαe. The rule has two children, each of which

1: procedure REPLAY(H, t)
2: CH ← {h|〈h,E〉 ∈ H}
3: if t is a is a leaf node N then
4: Construct T , l, u from P ∪ CH
5: c← BALANCEDSOLVE()
6: if c is not Unsat then return Unknown
7: Let ψ⊆P∪CH be the conflict from BALANCEDSOLVE

8: return REGRESS(ψ,H)
9: if the root of t has only one child c then

10: t′ ← subtree of t rooted at c
11: 〈h,E〉 ← IMPORTCONSTRAINT(last(c))
12: if E ⊆ CH ∪ P and E ∪ I |=T h then
13: return REPLAY(H · 〈h,E〉, t′)
14: else return REPLAY(H, t′)
15: if the root of t has two children c1 and c2 then
16: for i = 1, 2 do
17: ti ← subtree of t rooted at ci
18: 〈hi, ∅〉 ← last(ci)
19: Ki ← REPLAY(H · 〈hi, ∅〉, ti)
20: K ← RESOLVEBRANCH(K1,K2)
21: return REGRESS(K,H)

Fig. 6: The REPLAY procedure.

records in its sequence one of the two branch cases (with an
empty explanation). A node N is a leaf when the MIP solver
concludes that the problem P̃ ∪ CN is (real)-infeasible.

Ideally, a proof tree would allow us to prove that the
original problem P is integer-infeasible. However, because of
the approximate representation used by the MIP solver, this is
not always the case. As a consequence, our theory solver uses
the proof tree just as a guide for its own internal attempt to
prove that P is integer-infeasible. This process is captured at
a high level by the REPLAY function.

The REPLAY function is shown in Figure 6. It takes an
initially empty sequence H and a proof tree t, and traverses
the tree with the goal of computing a conflict, a subset
of the constraints in the original LP problem P that are
integer-infeasible. As REPLAY traverses the tree, it constructs
a sequence H which is analogous to the sequences in the tree
nodes, except that it contains only those constraints that the
internal exact solver has successfully replayed and so may only
be a subset of those in the tree node. (The REPLAY procedure
returns Unknown if the replay has failed.)

If t is a leaf node, then P̃ ∪CN should be integer-infeasible.
We check the exact analog, P ∪ CH . If unsuccessful, we
fail, returning Unknown; otherwise, we return a conflict. To
compute the conflict, we make use of an auxiliary function,
REGRESS, which is not shown. REGRESS takes a conflict K and
a sequence H of constraint-explanation pairs and recursively
replaces any constraint in K by explanation [assuming the
explanation is non-empty]. The net effect is to ensure a conflict
which does not contain derived cuts.

If the root of t has a single child, this child must have
been derived using the PROPAGATE rule. The last element of
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the sequence in the child node represents the new cut and
its explanation. We convert the cut and its explanation to their
exact analogs and then verify that we can derive the cut h from
the exact constraints in E. These steps are explained in more
detail below. If the cut can be verified, it and its explanation
are included in the parameter H passed to the next recursive
call to REPLAY. If not, the recursive call is made without h in
the hopes that it is not needed to derive a conflict.

The final case is when the root of t has two children,
indicating that the BRANCH rule was applied. Because branch
constraints only use integers, importing them cannot fail. We
are always able to represent them exactly. Thus, we simply
call REPLAY recursively on each of the two sub-trees, passing
one of the branch conditions to each sub-tree. The RESOLVE-
BRANCH procedure constructs a conflict from the two returned
conflicts K1 and K2. The procedure returns either: (i) the
result of resolving K1 and K2 to remove the branch literals,
(ii) Ki if it does not involve the branch, or (iii) Unknown
otherwise. (The failure case requires at least one branch to be
unknown.) As before, we use REGRESS to ultimately construct
a conflict with constraints in P (we require REGRESS to return
Unknown if K is Unknown).

Lines 12 and 13 of REPLAY require converting 〈h̃, Ẽ〉 to
an exact analog, 〈h,E〉, and then verifying that h can be
derived from E. We have implemented support for both
Mixed-Gomory cuts and a variant of aggregated Mixed Integer
Rounding cuts [15]. We will only explain here how reconstruc-
tion works for a special case of Gomory cutting planes.

The MIP solver can add a Gomory cutting plane h̃ when
the following conditions hold: (i) there is a row in T̃ , bi =∑
T̃i,j · xj ; (ii) all of the non-basic variables on the row are

assigned to either their upper or lower bound; (iii) a subset of
the variables on the row, that must include the basic variable
bi, are integer variables; and (iv) the assignment of bi is
non-integer. The premises (i)-(iv) make up the explanation
Ẽ.6 For simplicity of presentation, we additionally assume all
of the variables are integer and all the coefficients T̃i,j are
positive and assigned to their upper bounds. The assignment
to bi is then determined by the upper bounds of the non-
basic variables, ã(bi) =

∑
T̃i,j · ũ(xj). The cut h̃ for these

constraints is then∑ T̃i,j
ã(bi)− bã(bi)c (ũ(xj)− xj) ≥ 1.

Given 〈h̃, Ẽ〉, we can attempt to derive a trusted cut and
explanation 〈h,E〉 as follows. To reconstruct the cut, for every
bound xj ≤ ũ(xj) ∈ Ẽ, there must be a corresponding bound
xj ≤ u(xj) in the exact system. (Note: xj ≤ u(xj) can
be in either P or CH .) Next we attempt to reconstruct the
row bi =

∑
T̃i,jxj in exact precision as a row vector α. The

coefficient for the basic variable in α is -1 (αi = −1). Nonba-
sic variables’ coefficients are estimated from the approximate
variables, αj = DIOAPPROX(T̃i,j , D). If after approximation,
the sign of αj does not match the sign of T̃i,j , this cut cannot

6See [4] for a Gomory cutting plane rule without additional assumptions.

be reproduced. The equalities TV = 0 entail
∑
αkxk = 0 iff

α is in the row span of T . This entailment can be checked by
replacing auxiliary variables with their original definitions,

αi · xi +
∑

xj is structural

αj · xj +
∑

xkis auxiliary

αk · orig(xk),

and rejecting this cut if any of the coefficients do not cancel to
0.7 The row α and the bounds u(xj) are used to generate b =∑
αj · uj , which can be thought of as a potential assignment

to bi. The cut cannot be reproduced if b ∈ Z. If the value of
b is non-integer, the Gomory cut h

h :
∑ αj

b− bbc (u(xj)− xj) ≥ 1

has been reproduced in exact precision. The explanation for
h, E, includes the upper bounds xj ≤ u(xj), the integer
constraints, and the equations xk = orig(xk).

V. EXPERIMENTS AND DISCUSSION

All of the algorithms in this paper have been implemented
in the CVC4 SMT solver [16].8 In this section, we report the
results of experiments using these implementations.

The implementation contains additional heuristics and sev-
eral tunable parameters. While the authors have not done a
formal tuning of any of these parameters, we include these
values for completeness. There are two different simplex
implementations in CVC4, one that follows the well-known
simplex adapted for SMT described in [1], [4], and one based
on sum-of-infeasibilities as described in [3]. The experiments
were run using the latter method for the EXACTSOLVE proce-
dure with a pivot cap of kEX = 200 in Fig. 1 (with kFI = 200
for non-final calls). Values of other parameters used in our
experiments are D = 226; ε = 10−9; kLP = 10000; and
kMIP = 200000. For both the LP and MIP solvers, we
use the floating-point simplex solver in GLPK version 4.52
[17], instrumented to communicate the additional information
needed by CVC4 in order to verify assignments, conflicts,
and proof trees.9 To avoid branching loops in GLPK, GLPK is
halted if it branches 100 times on any one variable. To keep the
size of the numeric constants manageable, we reject any cut
containing a coefficient n

d where log2(|n|) + log2(|d|) > 512.
Further, we have a heuristic that dynamically disables the
GLPK solver if it claims the problem is real-feasible and then
integer-infeasible without generating any branches or cuts, a
strange situation that happens with the convert benchmarks
(see discussion below for details). GLPK is also dynamically
disabled if CVC4’s bignum package throws an exception while
trying to import a floating point number. CVC4 has a heuristic
that automatically detects and reencodes benchmarks in the
QF_LRA family miplib (which are derived from benchmarks
in [18]) in something closer to their original form.10

7α can also be generated by Gaussian elimination from
∧
xk = orig(xk).

8Experiments were run using a branch of CVC4 available at github.com/
timothy-king/CVC4/CVC4 (commit 2550b6d).

9Source for this modified version of GLPK is available at github.com/
timothy-king/glpk-cut-log (commit a35b8e).

10A comparison of other solvers on the miplib problems after this reencod-
ing gave similar results to those reported in Table I.
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CVC4+MIP CVC4 yices2 mathsat5 Z3 altergo cutsat scip glpk
set # inst. # sel. solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s) solved time (s)

Selecting all benchmarks in the family
QF LRA 652 652 645 6966 636 8557 632 5350 622 10913 615 5696 - - - - - - - -
non-conj. QF LIA 4579 4579 4489 86854 4472 86375 4375 30656 4543 55417 4474 75171 3956 262031 - - - - - -
conj. QF LIA 1303 1303 1249 11130 1068 31054 1111 55691 1154 33260 1039 19015 1232 2055 1018 35330 1255 7164 1173 8895
total 6534 6534 6383 104950 6176 125986 6118 91697 6319 99590 6128 99882 - - - - - - - -
Selecting QF LRA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
miplib 42 37 30 1530 21 3037 23 2730 17 5682 18 2435 - - - - - - - -
DTP-Scheduling 91 4 4 4 4 4 4 0 4 2 4 1 - - - - - - - -
latendresse 18 18 18 767 18 836 12 85 10 99 0 0 - - - - - - - -
total - 59 52 2301 43 3877 39 2815 31 5783 22 2436 - - - - - - - -
Selecting non-conjunctive QF LIA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
convert 319 282 208 9646 193 9343 188 4337 274 1876 282 118 166 272 - - - - - -
bofill-scheduling 652 460 460 5401 458 4490 460 748 460 1519 460 2060 67 55 - - - - - -
CIRC 51 11 11 0 11 0 11 0 11 0 11 0 11 0 - - - - - -
calypto 37 37 37 3 37 3 37 0 37 6 36 5 35 24 - - - - - -
nec-smt 2780 207 207 17276 207 18045 199 777 207 17925 201 7209 184 23724 - - - - - -
wisa 5 1 1 0 1 0 1 0 1 1 1 0 1 0 - - - - - -
total - 998 924 32326 907 31881 896 5862 990 21327 991 9392 464 24075 - - - - - -
Selecting conjunctive QF LIA benchmarks on which either LPSOLVE or MIPSOLVE was called at least once
dillig 233 189 189 49 157 9823 175 8557 188 7185 166 1269 189 5 166 5840 189 42 189 3
miplib2003 16 8 4 307 4 1283 4 507 5 354 5 1089 0 0 6 146 7 17 6 295
prime-cone 37 37 37 2 37 2 37 2 37 1 37 2 37 1 37 4 37 1 37 0
slacks 233 188 166 61 93 2003 107 15672 119 4741 90 1994 188 84 96 6324 161 2361 101 11
CAV 2009 591 424 424 69 346 10035 376 26351 421 10236 354 2759 423 323 377 17015 424 105 424 6
cut lemmas 93 74 62 9581 64 6865 72 1662 45 9472 38 5858 74 267 15 1887 72 1757 71 760
total - 920 882 10069 701 30011 771 52751 815 31989 690 12971 911 680 697 31216 890 4283 828 1075

TABLE I: Experimental results on QF_LRA and QF_LIA benchmarks.

The experiments were conducted on the StarExec plat-
form [19] with a CPU time limit of 1500 seconds and a
memory limit of 8GB. The first segment of Table I compares
our implementation with other SMT solvers over the full sets
of QF_LRA and QF_LIA benchmarks from the SMT-LIB
library (the “2013-03-07” version on StarExec), extended with
the latendresse QF_LRA benchmarks from [3]. The QF_LIA
benchmarks are divided into the conjunctive subset and the
non-conjunctive subset. The conjunctive subset consists of all
families, all of whose benchmarks are a simple conjunction
of constraints.11 The primary experimental comparison is be-
tween a configuration of CVC4 running just its internal solvers
(“CVC”) against a configuration with the techniques of this
paper enabled (“CVC4+MIP”). We additionally compare with
similar state-of-the-art SMT solvers: mathsat5 (smtcomp12
version) [20], z3 (v4.3.1) [21], and yices2 (v2.2.0) [22]. We
include a comparison against the version of AltErgo [23] used
in [24] on just the QF_LIA benchmarks. For the conjunctive
subset, we also give results for several solvers that support only
conjunctive benchmarks: cutsat (CADE11) [25], SCIP (scip-
3.0.0-ex+spx) [13], [26], and glpk (4.52) [17]. This version of
SCIP handles MIP problems in exact precision.

The remaining segments of Table I give more detailed

11The conjunctive families are dillig, miplib2003, prime-cone, slacks,
CAV 2009, cut lemmas, pidgeons, and pb2010. We translated these into the
SMT-LIBv1.0 and MPS formats: cs.nyu.edu/∼taking/conjunctive integers.tbz.

results for QF_LRA benchmarks, non-conjunctive QF_LIA
benchmarks, and conjunctive QF_LIA benchmarks respec-
tively. In each segment, we report only the results on bench-
marks for which CVC4+MIP invokes GLPK at least once.
(For each family, the second column of numbers indicates how
many benchmarks in the family are included in the results. See
cs.nyu.edu/∼taking/fmcad14 selections for a list of selected
benchmarks.)

Sat Unsat

set # sel. MIPSOLVE calls attempts successes attempts successes

QF LIA 1393 3873 2559 1058 652 425
convert 208 2130 1356 1 178 3
bofill-scheduling 254 254 245 245 0 0
CIRC 11 85 6 5 79 77
calypto 37 375 77 23 293 278
wisa 1 1 1 1 0 0
dillig 189 228 225 185 3 2
miplib2003 4 10 3 3 5 4
prime-cone 37 37 19 19 18 18
slacks 166 195 168 162 3 3
CAV 2009 424 469 459 414 8 7
cut lemmas 62 89 0 0 65 33

TABLE II: Success rate of reproducing results of MIPSOLVE

To better understand how successful the verification and
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replaying algorithms for integers described in Section IV are,
we analyzed all of the QF_LIA instances which were solved
by CVC4+MIP and for which MIPSOLVE was invoked at
least once, and collected the following statistics: the number
of times MIPSOLVE was called, the number of attempts and
successes at verifying Sat results from MIPSOLVE, and the
number of attempts and successes at replaying Unsat results
from MIPSOLVE. The results are shown in Table II.

On QF_LRA benchmarks, CVC4+MIP solves all of the
problem instances that the already competitive CVC4 does
plus 9 additional problems (solving more than any other
solver), all from the challenging miplib family. After pre-
processing, these benchmarks are represented internally as
mixed linear real and integer problems, so the INTEGER-
SOLVE procedure is invoked. CVC4+MIP is the only solver
to solve the opt1217--{27,37,57}.smt2 benchmarks,
and it does so in about 1s each. These and a handful of
other miplib problems are real-infeasible and are solved very
quickly by BALANCEDSOLVE. INTEGERSOLVE is able to verify
that several other miplib benchmarks are Sat. It was not able
to successfully solve the most difficult problems which are
real-feasible but integer-infeasible.

CVC4+MIP is also quite competitive on the QF_LIA prob-
lem instances. Particularly dramatic is the improvement of
CVC4+MIP over CVC4 on the (related) families dillig, slacks,
and CAV 2009 benchmarks. These benchmarks are small,
randomly generated, conjunctive problems that are mostly
satisfiable [25], [27]. It appears from Table II that CVC4+MIP
does well on these families due to a high proportion of
successes when IMPORTASSIGNMENT and SEEDEXACT are used
to verify Sat instances. Excluding the convert family, GLPK
returned Sat 1203 times, and in 1057 cases, we were able
to verify this with the exact solver. Given the challenges of
implementing branching and cutting within SMT solvers, this
suggests that the technique of soundly verifying results from
an external solver offers a new powerful tool in designing
QF_LIA solvers. The empirical results on the REPLAY pro-
cedure, while not as dramatic, are also promising. Excluding
the convert benchmarks, REPLAY was successful on 425 out of
652 invocations and did particularly well on (relatively) easy
benchmarks e.g. calypto and prime-cone.

CVC4+MIP is competitive with the dedicated conjunctive
solvers we included. Of course, its performance is limited by
that of GLPK (Interestingly, CVC4+MIP outperforms GLPK
on these benchmarks.) Though most of the improvement of
CVC4+MIP over CVC4 is on conjunctive benchmarks, the
authors suspect this to be an artifact of the benchmarks.

The convert family is interesting in that almost every proof
reported by GLPK on these benchmarks fails to replay. The
benchmarks contain integer equalities between variables with
coefficients of massively different scales. To ensure numerical
stability, GLPK increases each bound by some amount ε,
where ε is proportional to the size of the bound. Because of the
dramatic differences of scale in the coefficients in the convert
family, GLPK increases some bounds by a large amount and
others by a small amount. As a result, GLPK frequently

makes incorrect conclusions (both feasible and infeasible)
about subproblems from this family. These benchmarks thus
present a challenge for the techniques given in section IV and
are a good subject for future research.

Acknowledgments: We would like to thank Morgan De-
ters for his help running experiments and Bruno Dutertre for
providing us with a custom version of yices2.
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