Synthesis of Synchronization
using Uninterpreted Functions®

October 22, 2014

Roderick Bloem, Georg Hofferek, Bettina Kénighofer,
Robert Konighofer, Simon AulRerlechner, and Raphael Spork

TU

Grazm

* This work was supported in part by the Austrian Science Fund (FWF) through the national research network
RISE (S11406-N23) and the project QUAINT (I774-N23).

» www.iaik.tugraz.at SC(’)S

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:rg.

= Specification: What?

= From: Graz,

Inffeldgasse
= To: Lausanne, 6pm

Synthesis>

FMCAD 2014
Lausanne, October 22

What is Synthesis?

Implementation: How?

= Walkto Moserhofgasse
= Tram 6 to Jakominiplatz
= Buy tram ticket
= Tram 3 to train station Graz
= Buy train ticket
= Train to Salzburg
= Train to Zurich
= Train to Launsanne
= Walkto Lausanne Fon
= Andsoon...

SCOS

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions

T

= Specification: What?

= From: Graz,
Inffeldgasse

= To: Lausanne, 6pm

Synthesis>

FMCAD 2014
Lausanne, October 22

What is Synthesis?

Implementation: How?

Walk to Moserhofgasse

Tram ?7?7? to Jakominiplatz
= Buy tram ticket

Tram 3 to train station Graz

Buy train ticket

Train to ???

Train to Zurich

Train to Launsanne

Walk to Lausanne Fon

And soon ...

SCOS

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬁ-!;g.

Functionality:
= Hard to specify

= Easy to implement
- Implement manually

Vision:

v

Seqguentially

Programmer

Correct Code

Same Results

Concurrent Programs

Concurrent Correctness:

= Easy to specify

= Same result
= Hard to implement

- Synthesize

4

FMCAD 2014
Lausanne, October 22

_{

Synthesizing
Compiler

¥

P

Parallel

Code
7

SCOS

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-!;g.

Synthesizing Atomic Sections

Example:
» RSAdecryption using Chinese Remainder Theorem
= Goal: m =c9mod (p*q)

= Faster: mg=c?modqg m = crt(m,, m,)
= Parallelization:
1| threadl () { 11| thread2 () {
2 2 12 m, := c? mod g;
3 fin, := true; 13 fin, := true;
4 1f (!merged && fin,) 14 1f (!merged && fin,;)
5 merged := true; 15 merged := true;
6 m, := crt (mp, mq); 16 m, := crt (mp, mq);
71} 17| }

FMCAD 2014 SC(’)S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Kénighofer Synthesis of Synchronization using Uninterpreted Functions Graze
H Flow
N
N~ —
P Atomic |e ‘ Counterexample}
rogram _ _
: Sections Analysis

[Abstraction

SMT Encoding]—>[Verification J

Synchronized
Program

FMCAD 2014 SC(.)S

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬁ-!;g.

Abstraction

Challenge: Complicated arithmetic
= Synchronization should not depend on arithmetic
= - Abstract using uninterpreted functions

1| threadl () { 11| thread2 () {

2[m, := c? mod p; 12[my := c mod q;

3 fin, := true; 13 fin, := true;

4 if(!merged && fin,) 14 if(!'merged && fin,)
5 merged := true; 15 merged := true;

6 m, := crt (mp, mq); 16 m, := crt (mp, mq);
7| } 17| }

FMCAD 2014 SC(.)S

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-!;g.

Abstraction

Challenge: Complicated arithmetic
= Synchronization should not depend on arithmetic
= - Abstract using uninterpreted functions

= All arithmetic operations: +,-,%, ...
= Calls of functions without side-effects

1| threadl () { 11| thread2 () {

2 m, := £f,.(c, d, p); 12 m, := £f,.(c, d, q);
3 fin, := true; 13 fin, := true;

4 if(!merged && fin,) 14 if(!'merged && fin,)
5 merged := true; 15 merged := true;

6 Mp <= fcrt(mpr mq); 16 M, <= fcrt(m‘pl mq);
7| } 17| }

FMCAD 2014 SC(’)S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza
i Flow
N
N~
: Atomic e ‘ Counterexample]
rogram : :
J Sections A“aWT'S
[Abstraction Verification J
Synchronized
Program
FMCAD 2014 SC(’)S

Lausanne, October 22

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-gg.

SMT Encoding

= |mplicit specification
= result(Threadl || Thread2) = result(Threadl © Thread2) or
result(Thread2 © Threadl)

= result(): global variables at termination
= Often called “serializability” or “linearizability”
= Construct SMT formula:
= incorrect(inputs, scheduling)
= Satisfying assignment = incorrect execution
= Approach based on Bounded Model Checking [cavo05)

= Loops are unrolled
= Function calls are inlined (or abstracted)

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer

TU

Program J

l

FMCAD 2014
Lausanne, October 22

Synthesis of Synchronization using Uninterpreted Functions Graza
Flow
N
N~
Atomic Counterexample

Sections

Analysis]

er€xample
SMT Solver

[Abstraction H SMT Encoding]ﬂl{ Verification J

UNSAT

Synchronized
Program

SCOS

Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza

Counterexample Analysis:

Method 1 [POPL’10]

Thread 1 Thread2 = Eliminate counterexample:
= Atomic section at

|
Line :

Line

Line
(end of T1) :

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza

Counterexample Analysis:

Method 1 [POPL’10]

lteration 2:
Thread 1 Thread2 = Eliminate counterexample:

= Atomic section at
= Atomic section at

|
Line :

Line

Line
(end of T1) :

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:g.

Counterexample Analysis:

Method 1 [POPL10]

Iteration 3:
Thread 1 Thread2 = Eliminate counterexample:

= Atomic section at
= Atomic section at

= Minimal satisfying assignment
= - Atomic section at

No more
counterexamples

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza

Counterexample Analysis:

Method 2

Thread 1 Thread2 ®* Start with last (non-mandatory)
, .
thread switch

= Can we build a valid run from B on?

|
Line :

Line

Line
(end of T1) :

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza

Counterexample Analysis:

Method 2

Thread 1 Thread2 ® Start with last (non-mandatory)
' thread switch
= Can we build a valid run from B on?
= No? Problem already before
* |nvestigate A in the same way
* Yes? B Is suspicious.
= Add atomic section at

|
Line :

Line

= Thisis a heuristic!
‘/ - = May not find the minimal solution

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

TU

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions Graza
Flow
N
N
: Atomic e ‘ Counterexample}
rogram : :
J Sections Analysis
counterexample
SMT Solver
: : SMT - :
[Abstraction H SMT Encoding H Verification J
UNSAT
Synchronized
Program
FMCAD 2014 SC(.)S

Lausanne, October 22

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:g.

Experimental Results

= Prototype tool for (simple) C programs
* Toy examples:
* [InEq:
= Given: linear equation
= Given: assignment
= Program performs parallelized check
= Abstraction: -

= VecPrime:
= Counts prime numbers in a vector
= Abstraction: -
FCAD 2014 SCOS

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer

Synthesis of Synchronization using Uninterpreted Functions ﬂ-!;g.

Experimental Results: Toy Examples

Speedup due to Abstraction

=
o
o
o

[T}
)
7]
— -
LL +Method 1 ;
=) x Method 2 1
S 100
0
©
1%
G
< 10
; + +
X
1
1 10 100 1000
Without abstraction [sec]

FMCAD 2014

Lausanne, October 22

Average speedup factor:
110 not counting time-outs
160 when counting time-outs

SCOS

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:g.

Experimental Results

» Real-world examples:
= CVE-2014-0196 bug in Linux TTY driver

= Race condition can produce buffer overflow

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

Robert Kénighofer Synthesis of Synchronizal ;¢ tey oereet;
int OPOST tty;
- int STATE = 1;
EXxperimentq v e
int ¢ = 0;
int nr = 22;
int b = 77;
int true int = 1;
while (Erue int == 1) {
if (OPOST tty) {

» Real-world examples: wbile(r > 0)

int num = nr + 3;

= CVE-2014-0196 bug in Lin ool

r
if(nr != 0) {
= Race condition can pro(STV
nr = nr - 1;
}
}
} else {
STATE = 3;
c while (nr > 0) {
o int tmpOffset = tty offset;
= int tty space left = tty size - tmpOffset;
O if(tty space left - nr >= 0)
Q Cc = nr;
n else
O c = tty space left;
E tmpOffset = tty offset;
(@) tmpOf fset = tmpOffset + c;
?E tty offset = tmpOffset;
1f(c>0) {
b=D>b+ c;
nr = nr - c;
}
}
}
}
FMCAD 2014 }

Lausanne, October 22

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:g.

Experimental Results

» Real-world examples:
= CVE-2014-0196 bug in Linux TTY driver
= Race condition can produce buffer overflow
= Race condition in iio-subsystem of linux-kernel
= Variable that counts the number of running threads
*= Race condition in broadcom tigon3 ethernet driver
= Statistics can get inconsistent

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions -ErLa!.

Experimental Results: Real-World Bugs

= TTY and Tigon3:
= Qur tool finds exactly the suggested fix

= IO
= Qur tool finds a slightly different fix
= No user-defined specification necessary
= Serialzability as implicit specificationis enough
= EXxecution times [sec]:

W ithout Abstraction W ith Abstraction
Method1l Method?2 | Method1l Method 2

TTY 11 13 4.1 5.8
1e 1.1 1.3 0.9 1.1
Tigon3 17 21 9.8 13

FMCAD 2014 SC(.)S
Lausanne, October 22

Secure & Correct Systems

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions ﬂ-lc:g.

Summary and Conclusions

Highlights:
= No manual specifications - usability
= Abstraction with uninterpreted functions = scalability

* Proof-of-concept implementation
= http://www.ialk.tugraz.at/content/research/design verification/atoss/

Future work:

= Abstraction refinement (e.g., associativity,
commutativity), other abstractions, loops, ...

FMCAD 2014 SC@S

Lausanne, October 22 Secure & Correct Systems

http://www.iaik.tugraz.at/content/research/design verification/atoss/
http://www.iaik.tugraz.at/content/research/design verification/atoss/
http://www.iaik.tugraz.at/content/research/design verification/atoss/
http://www.iaik.tugraz.at/content/research/design verification/atoss/
http://www.iaik.tugraz.at/content/research/design verification/atoss/

Robert Konighofer Synthesis of Synchronization using Uninterpreted Functions IrLa!.

References

[CAV'05] |. Rabinovitz and O. Grumberg. Bounded model checking of
concurrent programs. In CAV’05, LNCS 3576. Springer, 2005.

[POPL'10] M. T. Vechey, E. Yahav, and G. Yorsh. Abstraction-guided synthesis
of synchronization. In POPL'10. ACM, 2010.

FMCAD 2014 SC(.)S

Lausanne, October 22 Secure & Correct Systems

