

SAT-Based Methods for Circuit Synthesis*

October 22, 2014

Roderick Bloem Patrick Klampfl Robert Könighofer

Uwe Egly Florian Lonsing

e Austrian Science Fund (FWF) through the national research netwo

* This work was supported in part by the Austrian Science Fund (FWF) through the national research network RiSE (S11406-N23, S11409-N23) and the project QUAINT (I774-N23), as well as by the European Commission through project STANCE (317753).

ΙΙΑΙΚ

2

SAT-Based Methods for Circuit Synthesis

What is Synthesis?

Synthesis

- Specification: What?
 - From: Graz, Inffeldgasse
 - To: Lausanne, 6pm

Implementation: How?

- Walk to Moserhofgasse
- Tram 6 to Jakominiplatz
 - Buy tram ticket
- Tram 3 to train station Graz
- Buy train ticket
- Train to Salzburg
- Train to Zürich
- Train to Launsanne
- Walk to Lausanne Fon
- And so on …

3

SAT-Based Methods for Circuit Synthesis

Reactive Synthesis

- Specification:
 - Temporal Logic

Implementation:Reactive system

Robert Könighofer

SAT-Based Methods for Circuit Synthesis

Secure & Correct Systems

Lausanne, October 22

ΠΑΙΚ

5

Challenges

Scalability

- Symbolic algorithms
- Traditionally: BDDs
- This work: SAT/QBF
- Find small circuits
 - Low number of gates
 - Exploit freedom in $S(\overline{\iota}, \overline{o})$ wisely
- Our work:
 - Comparison of SAT/QBF-based methods
 - Optimizations

Method 1: QBF Certification

Given:

ΙΙΑΙΚ

6

• $\forall \overline{\imath} : \exists \overline{o} : S(\overline{\imath}, \overline{o})$

Find:

• Skolem function $\bar{o} = f(\bar{\iota})$

Existing Tool:

QBFCert [SAT'12]

7

Method 2: Interpolation [ICCAD'09]

For one output after the other:

- Construct formulas mustBeTrue(\overline{i}), mustBeFalse(\overline{i})
 - mustBeTrue($\overline{\iota}$) \land mustBeFalse($\overline{\iota}$) = UNSAT
- Compute Interpolant $I(\bar{\iota})$
 - mustBeTrue($\overline{\iota}$) $\rightarrow I(\overline{\iota}) \rightarrow \neg$ mustBeFalse($\overline{\iota}$)

ΠΑΙΚ

8

Method 3: Computational Learning [FMCAD'12]

For one output after the other:

- Construct formulas mustBeTrue(\overline{i}), mustBeFalse(\overline{i})
 - mustBeTrue($\overline{\iota}$) \land mustBeFalse($\overline{\iota}$) = UNSAT
- "<u>Learn</u>" Interpolant I(ī)
 - Counterexample-guided refinement
 - Many options: SAT or QBF, …

	Robert k	Könighofer SAT-Based Methods for Circuit Synthesis
9 9		Results:
		Execution Time
		actus Plot
Evocution Timo [coo]	10000	QBF Learning Interpolation BDDs QBF Cert SAT Learning
		Benchmarks

SCOS Secure & Correct Systems

Robert	Könighofer	SAT-Based Methods for Circuit Synthesis	
		Results:	
		Circuit Size	
• Ca	actus Plot		
1000000			BDDs
100000	QBF Cert		
م 0000 ਉ	OBE		
Size [#	Learning		
0001 00			SAT Learning
Ö 100 -			
10			
		Benchmarks	

11

Conclusions

- SAT-based learning works best
- Execution time and circuit size correlate
- Check out the paper for details
 - Optimizations
 - More results
- Implementation is available:
 - <u>http://www.iaik.tugraz.at/content/research/design_verification/demiurge/</u>

12

SAT-Based Methods for Circuit Synthesis

References

[SAT'12]	A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere.
	Resolution-based certificate extraction for QBF. In SAT'12.
	Springer, 2012.

- [ICCAD'09] J.-H. R. Jiang, H.-P. Lin, and W.-L. Hung. Interpolating functions from large boolean relations. In ICCAD'09. IEEE, 2009.
- [FMCAD'12] R. Ehlers, R. Könighofer, and G. Hofferek. Symbolically synthesizing small circuits. In FMCAD'12. IEEE, 2012

