
Compiler verification
for fun and profit

Xavier Leroy

Inria Paris-Rocquencourt

FMCAD, 2014-10-22

X. Leroy (Inria) Compiler verification FMCAD’14 1 / 52

Prologue:
Can you trust your compiler?

X. Leroy (Inria) Compiler verification FMCAD’14 2 / 52

The compilation process

General definition: any automatic translation from a computer language to
another.

Restricted definition: efficient (“optimizing”) translation from a source
language (understandable by programmers) to a machine language
(executable in hardware).

A mature area of computer science:

Nearly 60 years old! (Fortran I: 1957)

Huge corpus of code generation and optimization algorithms.

Many industrial-strength compilers that perform subtle
transformations.

X. Leroy (Inria) Compiler verification FMCAD’14 3 / 52

An example of compiler optimization

Consider:

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with the Tru64/Alpha compiler and manually decompiled back
to C. . .

X. Leroy (Inria) Compiler verification FMCAD’14 4 / 52

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

X. Leroy (Inria) Compiler verification FMCAD’14 5 / 52

double dotproduct(int n, double a[], double b[]) {

dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

X. Leroy (Inria) Compiler verification FMCAD’14 5 / 52

double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}

X. Leroy (Inria) Compiler verification FMCAD’14 5 / 52

Even unoptimized code generation is delicate

double floatofint(unsigned int i) { return (double) i; }

The PowerPC 32-bit architecture provides no instruction to convert from
int to float. The compiler must therefore emulate it, as follows:

double floatofint(unsigned int i)

{

union { double d; unsigned int x[2]; } u, v;

u.x[0] = 0x43300000; u.x[1] = i;

v.x[0] = 0x43300000; v.x[1] = 0;

return u.d - v.d;

}

(Hint: the 64-bit integer 0x43300000× 232 + x is the IEEE754 encoding of the

double float 252 + (double)x .)

X. Leroy (Inria) Compiler verification FMCAD’14 6 / 52

Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for each,
found situations in which the compiler generated incorrect code
for accessing volatile variables. This result is disturbing because
it implies that embedded software and operating systems — both
typically coded in C, both being bases for many mission-critical
and safety-critical applications, and both relying on the correct
translation of volatiles — may be being miscompiled.

E. Eide & J. Regehr, EMSOFT 2008

X. Leroy (Inria) Compiler verification FMCAD’14 7 / 52

Miscompilation happens

We created a tool that generates random C programs, and then
spent two and a half years using it to find compiler bugs. So far,
we have reported more than 325 previously unknown bugs to
compiler developers. Moreover, every compiler that we tested
has been found to crash and also to silently generate wrong code
when presented with valid inputs.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011

X. Leroy (Inria) Compiler verification FMCAD’14 8 / 52

Latest sighting

[Our] new method succeeded in finding bugs in the latter five
(newer) versions of GCCs, in which the previous method detected
no errors.

int main (void)

{

unsigned x = 2U;

unsigned t = ((unsigned) -(x/2)) / 2;

assert (t != 2147483647);

}

It turned out that [the program above] caused the same error on
the GCCs of versions from at least 3.1.0 through 4.7.2, regardless
of targets and optimization options.

E. Nagai, A. Hashimoto, N. Ishiura, SASIMI 2013

X. Leroy (Inria) Compiler verification FMCAD’14 9 / 52

Are miscompilation bugs a problem?

For non-critical software:

Programmers rarely run into them.

When they do, it’s very hard to debug.

Globally negligible compared with bugs in the program itself.

For critical software:

A source of concern.

Require additional verification activities.
(E.g. manual reviews of generated assembly code; more tests.)

Complicate the qualification process.

Reduce the usefulness of formal verification.

X. Leroy (Inria) Compiler verification FMCAD’14 10 / 52

Miscompilation and formal verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

The guarantees obtained (so painfully!) by source-level formal verification
may not carry over to the executable code . . .

X. Leroy (Inria) Compiler verification FMCAD’14 11 / 52

A solution? Verified compilers

Why not formally verify the compiler itself?

After all, compilers have simple specifications:

If compilation succeeds, the generated code should behave as
prescribed by the semantics of the source program.

As a corollary, we obtain:

Any safety property of the observable behavior of the source
program carries over to the generated executable code.

X. Leroy (Inria) Compiler verification FMCAD’14 12 / 52

Compiler verification for profit

In the context of high-assurance software that undergoes strict
certification (DO-178 in avionics, Common Criteria in security):

Provides strong guarantees on compilers and code generators,
guarantees that are very hard to obtain by more conventional
methods (tests and reviews).

Enable the use of aggressive optimizations
(which would otherwise be problematic for certification).

Generate confidence in the results of source-level formal verifications
(making it easier to derive certification credit from these verifications).

X. Leroy (Inria) Compiler verification FMCAD’14 13 / 52

Compiler verification for fun

Compilers are challenging pieces of software from a formal verification
standpoint:

Complex data structures: abstract syntax trees, control-flow graphs.

Complex algorithms, often recursive.

Specifications involve formal, operational semantics for “big”
languages.

Beyond the reach of automated verification techniques?
(model checking, static analysis, automated deductive program provers).

A very good match for interactive theorem proving!

X. Leroy (Inria) Compiler verification FMCAD’14 14 / 52

An old idea. . .

Mathematical Aspects of Computer Science, 1967

X. Leroy (Inria) Compiler verification FMCAD’14 15 / 52

An old idea. . .

Machine Intelligence (7), 1972.

X. Leroy (Inria) Compiler verification FMCAD’14 16 / 52

CompCert:
a compiler you can formally trust

X. Leroy (Inria) Compiler verification FMCAD’14 17 / 52

The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a very large subset of C99.

Target language: PowerPC/ARM/x86 assembly.

Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not trying to
prove an existing compiler.

X. Leroy (Inria) Compiler verification FMCAD’14 18 / 52

The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

calling conventions

linearization

of the CFG

layout of

stack frames

asm code generation

Optimizations: constant prop., CSE,

inlining, tail calls

X. Leroy (Inria) Compiler verification FMCAD’14 19 / 52

Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is entirely
machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:

forall p tp beh,

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) beh ->

exists beh’, program_behaves (Csem.semantics p) beh’

/\ behavior_improves beh’ beh.

X. Leroy (Inria) Compiler verification FMCAD’14 20 / 52

What does semantic preservation say?

Behaviors beh =
termination / divergence / crashing on an undefined behavior

+ trace of I/O operations (system calls & volatile accesses)

The theorem says that the behavior of the generated code is at least as
good as one of the behaviors of the source program:

Source code: i1.o1.o2.i2.o3 i1.o1.† undefined behavior

Compiled code: i1.o1.o2.i2.o3 i1.o1.o2 . . .

(same behavior) (“improved” undefined behavior)

If the source code was verified to be free of undefined behaviors, we know
that the compiled code behaves exactly like the source program.

X. Leroy (Inria) Compiler verification FMCAD’14 21 / 52

Proof effort

15%

Code

8%

Sem.

17%

Claims

54%

Proof scripts

7%

Misc

100,000 lines of Coq.

Including 15000 lines of “source code” (≈ 60,000 lines of Java).

6 person.years

Low proof automation (could be improved).

X. Leroy (Inria) Compiler verification FMCAD’14 22 / 52

Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in Coq’s
specification language, using pure functional style.

Monads to handle errors and mutable state.

Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from these
specifications.

Claim: purely functional programming is the shortest path to writing and
proving a program.

X. Leroy (Inria) Compiler verification FMCAD’14 23 / 52

The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Register allocation

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB

X. Leroy (Inria) Compiler verification FMCAD’14 24 / 52

Performance of generated code
(On a Power 7 processor)

fi
b

q
so

rt ff
t

sh
a1 ae

s

al
m

ab
en

ch

lis
ts

b
in

ar
yt

re
es

fa
n

n
ku

ch

kn
u

cl
eo

ti
d

e

m
an

d
el

br
o

t

n
b

o
d

y

n
si

ev
e

n
si

ev
eb

it
s

sp
ec

tr
al

vm
ac

h

b
is

ec
t

ch
o

m
p

p
er

lin

ar
co

d
e

lz
w

lz
ss

ra
yt

ra
ce

r

Execution time
gcc -O0 CompCert gcc -O1 gcc -O3

X. Leroy (Inria) Compiler verification FMCAD’14 25 / 52

A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are absent. As of
early 2011, the under-development version of CompCert is the
only compiler we have tested for which Csmith cannot find
wrong-code errors. This is not for lack of trying: we have
devoted about six CPU-years to the task. The apparent
unbreakability of CompCert supports a strong argument that
developing compiler optimizations within a proof framework,
where safety checks are explicit and machine-checked, has
tangible benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011

X. Leroy (Inria) Compiler verification FMCAD’14 26 / 52

A peek under the hood:
how to verify a compilation pass

X. Leroy (Inria) Compiler verification FMCAD’14 27 / 52

Compiler verification patterns (for each pass)

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified

X. Leroy (Inria) Compiler verification FMCAD’14 28 / 52

Verified transformation vs. verified validation

Verified validation: usually less to prove; sound; may fail at compile-time.
Verified transformation: usually more to prove; sound; complete.

Example: register allocation via graph coloring.

t

is

a

b c

t

is

a

b c

a = i << 2

b = load(t+a)

c = float(b)
s = s + c

R3 = R2 << 2

R3 = load(R1+R3)

F1 = float(R3)

F2 = reload(SP+16)

F2 = F2 + F1
spill(F2, SP+16)

liveness analysis
constr. interf. graph

graph coloring

code rewriting
insert spill code

X. Leroy (Inria) Compiler verification FMCAD’14 29 / 52

The verified-validated continuum

Checker for
colorings

Liveness analysis

Construction of
interference graph

Code rewriting

Graph coloring
(IRC algorithm)

P
ro

ve
d

in
C

o
q

N
ot

pr
ov

ed

2
6

0
0

L
O

C

(Leroy, JAR 2009)

(May fail)

Fully

verified
implementation

of IRC

Liveness analysis

Construction of
interference graph

Code rewriting

1
2

0
0

0
L

O
C

(Blazy, Robillard, Appel 2010)

(Total)

Translation
validation
via sets
{var = loc}

Any register

allocator
incl. spilling

and live-range
splitting

8
0

0
L

O
C

(Rideau and Leroy 2010)

(May fail)

Defensive
coloring
engine

Liveness analysis

Construction of
interference graph

Code rewriting

Elimination order
Coalescing

decisions
(90% of IRC)

2
8

0
0

L
O

C

(Total!)

X. Leroy (Inria) Compiler verification FMCAD’14 30 / 52

The verified-validated continuum

Checker for
colorings

Liveness analysis

Construction of
interference graph

Code rewriting

Graph coloring
(IRC algorithm)

P
ro

ve
d

in
C

o
q

N
ot

pr
ov

ed

2
6

0
0

L
O

C

(Leroy, JAR 2009)

(May fail)

Fully

verified
implementation

of IRC

Liveness analysis

Construction of
interference graph

Code rewriting

1
2

0
0

0
L

O
C

(Blazy, Robillard, Appel 2010)

(Total)

Translation
validation
via sets
{var = loc}

Any register

allocator
incl. spilling

and live-range
splitting

8
0

0
L

O
C

(Rideau and Leroy 2010)

(May fail)

Defensive
coloring
engine

Liveness analysis

Construction of
interference graph

Code rewriting

Elimination order
Coalescing

decisions
(90% of IRC)

2
8

0
0

L
O

C

(Total!)

X. Leroy (Inria) Compiler verification FMCAD’14 30 / 52

The verified-validated continuum

Checker for
colorings

Liveness analysis

Construction of
interference graph

Code rewriting

Graph coloring
(IRC algorithm)

P
ro

ve
d

in
C

o
q

N
ot

pr
ov

ed

2
6

0
0

L
O

C

(Leroy, JAR 2009)

(May fail)

Fully

verified
implementation

of IRC

Liveness analysis

Construction of
interference graph

Code rewriting

1
2

0
0

0
L

O
C

(Blazy, Robillard, Appel 2010)

(Total)

Translation
validation
via sets
{var = loc}

Any register

allocator
incl. spilling

and live-range
splitting

8
0

0
L

O
C

(Rideau and Leroy 2010)

(May fail)

Defensive
coloring
engine

Liveness analysis

Construction of
interference graph

Code rewriting

Elimination order
Coalescing

decisions
(90% of IRC)

2
8

0
0

L
O

C

(Total!)

X. Leroy (Inria) Compiler verification FMCAD’14 30 / 52

The verified-validated continuum

Checker for
colorings

Liveness analysis

Construction of
interference graph

Code rewriting

Graph coloring
(IRC algorithm)

P
ro

ve
d

in
C

o
q

N
ot

pr
ov

ed

2
6

0
0

L
O

C

(Leroy, JAR 2009)

(May fail)

Fully

verified
implementation

of IRC

Liveness analysis

Construction of
interference graph

Code rewriting

1
2

0
0

0
L

O
C

(Blazy, Robillard, Appel 2010)

(Total)

Translation
validation
via sets
{var = loc}

Any register

allocator
incl. spilling

and live-range
splitting

8
0

0
L

O
C

(Rideau and Leroy 2010)

(May fail)

Defensive
coloring
engine

Liveness analysis

Construction of
interference graph

Code rewriting

Elimination order
Coalescing

decisions
(90% of IRC)

2
8

0
0

L
O

C

(Total!)

X. Leroy (Inria) Compiler verification FMCAD’14 30 / 52

Validating register allocation a posteriori
(Silvain Rideau & Xavier Leroy, Compiler Construction 2010)

For each program point p, infer and check the consistency of a
set of equations E (p) between variables and locations (*):

E (p) = {x1 = `1; . . . ; xn = `n}

Intuition: in every execution of the original code and the transformed
code, the current value of `i at p is the same as that of xi at p.

(*) locations = processor registers ∪ stack slots.

X. Leroy (Inria) Compiler verification FMCAD’14 31 / 52

Forward analysis

x1 = x2 + x3 `1 = `2 + `3 pp

BEFORE

AFTER

Assume given a set of equations BEFORE that holds “before” point p.

Check that {x2 = `2} ∈ BEFORE and {x3 = `3} ∈ BEFORE.

Compute set of equations AFTER that holds “after” points p:

Remove all equations x = ` such that x = x1 or ` overlaps with `1.

Add equation x1 = `1

X. Leroy (Inria) Compiler verification FMCAD’14 32 / 52

Alternative: backward analysis

x1 = x2 + x3 `1 = `2 + `3 pp

BEFORE

AFTER

Assume given a set of equations AFTER that must hold “after” point p for
the rest of the executions to behave identically.

Check that AFTER contains no equations x = ` such that
(x , `) 6= (x1, `1) and (x = x1 or ` overlaps with `1).
(These equations cannot be satisfied in general.)

Compute set of equations BEFORE that must hold “before” point p for the
rest of the executions to behave identically:

Remove the equation x1 = `1 if present.

Add equations x2 = `2 and x3 = `3.

X. Leroy (Inria) Compiler verification FMCAD’14 33 / 52

Comparing backward and forward approaches

If we project the sets of equations {xi = `i} on one side, say {xi}:

Equations inferred: Forward approach ⊇ Backward approach

Projections: Reaching definitions ⊇ Live variables

In general, the backward approach is more efficient because it produces
smaller sets of equations.

X. Leroy (Inria) Compiler verification FMCAD’14 34 / 52

Backward equations for coalesced copies

x1 = x2 nop pp

BEFORE

AFTER

Assume given a set of equations AFTER that must hold “after” point p for
the rest of the executions to behave identically.

The set BEFORE of equations that must hold “before” is

{(x2 = `) | (x1 = `) ∈ AFTER}
∪ {(x = `) | (x = `) ∈ AFTER and x 6= x1}

X. Leroy (Inria) Compiler verification FMCAD’14 35 / 52

Backward equations for inserted moves

`1 = `2

BEFORE

AFTER

Check that AFTER contains no equation x = ` with
` 6= `1 and ` overlaps `1.

The set BEFORE of equations that must hold “before” is

{(x = `2) | (x = `1) ∈ AFTER}
∪ {(x = `) | (x = `) ∈ AFTER and ` 6= `1}

X. Leroy (Inria) Compiler verification FMCAD’14 36 / 52

The validation algorithm

check function(f , f ′) =
compute the solutions E (p) of the dataflow equations

E (p) =
⋃
{transfer(f , f ′, s ′,E (s ′) | s ′ successor of p in f }

let E0 = transfer(f , f ′, f ′.entrypoint,E (f ′.entrypoint))
check E0 6= > and

E0 ∩ f .params ⊆ {f .params = parameters(f ′.typesig)}

X. Leroy (Inria) Compiler verification FMCAD’14 37 / 52

Soundness proof

Theorem: if check function(f , f ′) = true, the transformed function f ′

behaves at run-time exactly like f .

The proof builds on a forward simulation diagram:

(p1, e1,m1)

(p2, e2,m2)

(p1, e
′
1,m1)

(p2, e
′
2,m2)

+

e1, e
′
1 |= BEFORE(p1)

e2, e
′
2 |= BEFORE(p2)

Satisfaction of a set E of equations by a state e : variable → value and a
state e ′ : location→ value:

e, e ′ |= E
def
= ∀(x = `) ∈ E , x ∈ Dom(e) =⇒ e(x) = e ′(`)

X. Leroy (Inria) Compiler verification FMCAD’14 38 / 52

Semantic preservation for whole executions

(initial state) S1
invariant

T1 (initial state)

S2

ε ?

invariant
T2

ε?

S3

ν1 ?

invariant
T3

ν1?

S4

ν2 ?

invariant
T4

ν2?

(final state) S5

ε ?

invariant
T5 (final state)

ε?

Proves that the original program and the transformed program have the
same behavior (the trace t = ν1.ν2).

X. Leroy (Inria) Compiler verification FMCAD’14 39 / 52

Towards other source languages

X. Leroy (Inria) Compiler verification FMCAD’14 40 / 52

Verified compilation of various languages

C

C++

High-level,
garbage-collected

languages
(Java, C#, functional)

Scripting languages
(Javascript)

Domain-specific languages
(hardware description,
synchronous/reactive,
query languages, etc)

C: the lingua franca of systems programming
– low-level semantics with many dark corners
+ relatively simple compilation (but: optimization is difficult)
+ no run-time system

X. Leroy (Inria) Compiler verification FMCAD’14 41 / 52

Verified compilation of various languages

C

C++

High-level,
garbage-collected

languages
(Java, C#, functional)

Scripting languages
(Javascript)

Domain-specific languages
(hardware description,
synchronous/reactive,
query languages, etc)

C++:
– all the dark corners of C plus a complex object model
+ C-like compilation
– a bit of a run-time system (exceptions)

X. Leroy (Inria) Compiler verification FMCAD’14 41 / 52

Verified compilation of various languages

C

C++

High-level,
garbage-collected

languages
(Java, C#, functional)

Scripting languages
(Javascript)

Domain-specific languages
(hardware description,
synchronous/reactive,
query languages, etc)

High-level garbage-collected languages:
+ clean semantics
+ nontrivial but interesting compilation
– large run-time system (allocation, GC, exceptions, . . .)

X. Leroy (Inria) Compiler verification FMCAD’14 41 / 52

Verified compilation of various languages

C

C++

High-level,
garbage-collected

languages
(Java, C#, functional)

Scripting languages
(Javascript)

Domain-specific languages
(hardware description,
synchronous/reactive,
query languages, etc)

Scripting languages:
– obscure semantics
– not designed for compilation
– very large run-time system (GC + DOM + . . .)

X. Leroy (Inria) Compiler verification FMCAD’14 41 / 52

Verified compilation of various languages

C

C++

High-level,
garbage-collected

languages
(Java, C#, functional)

Scripting languages
(Javascript)

Domain-specific languages
(hardware description,
synchronous/reactive,
query languages, etc)

Domain-specific languages with limited expressiveness:
+ clean semantics
+ opportunities for superoptimization & synthesis
+ no run-time system
+ used in critical embedded systems (e.g. Scade, Simulink)

X. Leroy (Inria) Compiler verification FMCAD’14 41 / 52

FeSi (Featherweight Synthesis): verified hardware synthesis
(Thomas Braibant & Adam Chlipala, CAV’13)

A simple, declarative hardware description language in the style of Lava
and Bluespec.

Oriented towards the description and proof of parameterized circuits
(e.g. n-bit multiplier for all n).

Embedded within Coq → dependent types, recursion, . . .

Simple but nontrivial synthesis of RTL circuits, verified in Coq.

Coq functions
evaluation

FeSi AST
synthesis

RTL

semantic equivalenceCoq proof (∀n)

X. Leroy (Inria) Compiler verification FMCAD’14 42 / 52

A taste of FeSi: n-bit carry-lookahead adder (simplified)

Fixpoint add {Phi} n (x : expr V (Tint [2^n])) (y : expr V (Tint [2^n]))

: action Phi V (Ttuple [Tbool; Tbool; Tint [2^n]; Tint [2^n]]) :=

match n with

| 0 =>

ret [tuple ((x = #i 1) || (y = #i 1)), (* propagated carry *)

((x = #i 1) && (y = #i 1)), (* generated carry *)

x + y, (* sum if no carry-in *)

x + y + #i 1] (* sum if carry-in *)

| S n =>

do xL <~ low x; do xH <~ high x; do yL <~ low y; do yH <~ high y;

do rL <- add n xL yL; do rH <- add n xH yH;

do (pL, gL, sL, tL) <~ rL; do (pH, gH, sH, tH) <~ rH;

do sH’ <~ (Emux (gL) (tH) (sH));

do tH’ <~ (Emux (pL) (tH) (sH));

do pH’ <~ (gH || (pH && pL));

do gH’ <~ (gH || (pH && gL));

ret [tuple pH’, gH’, combineLH sL sH’, combineLH tL tH’]

end

Note: dependent types + recursion + circuit generation.
X. Leroy (Inria) Compiler verification FMCAD’14 43 / 52

A taste of FeSi: n-bit carry-lookahead adder (simplified)

Fixpoint add {Phi} n (x : expr V (Tint [2^n])) (y : expr V (Tint [2^n]))

: action Phi V (Ttuple [Tbool; Tbool; Tint [2^n]; Tint [2^n]]) :=

match n with

| 0 =>

ret [tuple ((x = #i 1) || (y = #i 1)), (* propagated carry *)

((x = #i 1) && (y = #i 1)), (* generated carry *)

x + y, (* sum if no carry-in *)

x + y + #i 1] (* sum if carry-in *)

| S n =>

do xL <~ low x; do xH <~ high x; do yL <~ low y; do yH <~ high y;

do rL <- add n xL yL; do rH <- add n xH yH;

do (pL, gL, sL, tL) <~ rL; do (pH, gH, sH, tH) <~ rH;

do sH’ <~ (Emux (gL) (tH) (sH));

do tH’ <~ (Emux (pL) (tH) (sH));

do pH’ <~ (gH || (pH && pL));

do gH’ <~ (gH || (pH && gL));

ret [tuple pH’, gH’, combineLH sL sH’, combineLH tL tH’]

end

Note: dependent types + recursion + circuit generation.
X. Leroy (Inria) Compiler verification FMCAD’14 43 / 52

A taste of FeSi: n-bit carry-lookahead adder (simplified)

Fixpoint add {Phi} n (x : expr V (Tint [2^n])) (y : expr V (Tint [2^n]))

: action Phi V (Ttuple [Tbool; Tbool; Tint [2^n]; Tint [2^n]]) :=

match n with

| 0 =>

ret [tuple ((x = #i 1) || (y = #i 1)), (* propagated carry *)

((x = #i 1) && (y = #i 1)), (* generated carry *)

x + y, (* sum if no carry-in *)

x + y + #i 1] (* sum if carry-in *)

| S n =>

do xL <~ low x; do xH <~ high x; do yL <~ low y; do yH <~ high y;

do rL <- add n xL yL; do rH <- add n xH yH;

do (pL, gL, sL, tL) <~ rL; do (pH, gH, sH, tH) <~ rH;

do sH’ <~ (Emux (gL) (tH) (sH));

do tH’ <~ (Emux (pL) (tH) (sH));

do pH’ <~ (gH || (pH && pL));

do gH’ <~ (gH || (pH && gL));

ret [tuple pH’, gH’, combineLH sL sH’, combineLH tL tH’]

end

Note: dependent types + recursion + circuit generation.
X. Leroy (Inria) Compiler verification FMCAD’14 43 / 52

A taste of FeSi: n-bit carry-lookahead adder (simplified)

Fixpoint add {Phi} n (x : expr V (Tint [2^n])) (y : expr V (Tint [2^n]))

: action Phi V (Ttuple [Tbool; Tbool; Tint [2^n]; Tint [2^n]]) :=

match n with

| 0 =>

ret [tuple ((x = #i 1) || (y = #i 1)), (* propagated carry *)

((x = #i 1) && (y = #i 1)), (* generated carry *)

x + y, (* sum if no carry-in *)

x + y + #i 1] (* sum if carry-in *)

| S n =>

do xL <~ low x; do xH <~ high x; do yL <~ low y; do yH <~ high y;

do rL <- add n xL yL; do rH <- add n xH yH;

do (pL, gL, sL, tL) <~ rL; do (pH, gH, sH, tH) <~ rH;

do sH’ <~ (Emux (gL) (tH) (sH));

do tH’ <~ (Emux (pL) (tH) (sH));

do pH’ <~ (gH || (pH && pL));

do gH’ <~ (gH || (pH && gL));

ret [tuple pH’, gH’, combineLH sL sH’, combineLH tL tH’]

end

Note: dependent types + recursion + circuit generation.
X. Leroy (Inria) Compiler verification FMCAD’14 43 / 52

FeSi internal representation

A type of expressions (= combinatorial circuits) . . .

Inductive expr: ty → Type :=

(* Input wires *)

| Evar : ∀ t, V t → expr t

(* Operations on Booleans *)

| Eandb : expr B → expr B → expr B | ...

(* Operations on n-bit integers *)

| Eadd : ∀ n, expr (Int n) → expr (Int n) → expr (Int n) | ...

(* Operations on tuples *)

| Efst : ∀ l t, expr (Tuple (t:: l)) → expr t | ...

X. Leroy (Inria) Compiler verification FMCAD’14 44 / 52

FeSi internal representation

. . . and a type of actions (= sequential circuits).

Inductive action: ty → Type:=

| Return: ∀ t, expr t → action t

(* Connecting two actions via a wire *)

| Bind: ∀ t u, action t → (V t → action u) → action u

(* Guards (control flow) *)

| Assert: expr B → action Unit

| OrElse: ∀ t, action t → action t → action t

(* Operations on registers *)

| RegRead : ∀ t, member Φ (Reg t) → action t

| RegWrite: ∀ t, member Φ (Reg t) → expr t → action Unit

High-level semantics: close to that of a functional language.
Register writes are batched and performed at end of cycle.
The semantics of an action is a state transformer

state at beginning of cycle → state at beginning of next cycle

X. Leroy (Inria) Compiler verification FMCAD’14 45 / 52

Compiling FeSi to RTL

A simple 4-stage compiler with a few optimizations:

1 Normalization: give names to intermediate results.

2 Transform control-flow into data-flow;
synthesize write-enable signals for register updates.

3 Syntactic common subexpression elimination.

4 BDD-based reduction of Boolean expressions.

X. Leroy (Inria) Compiler verification FMCAD’14 46 / 52

Putting it all together

The FeSi compilation pipeline and its correctness statement:

Variable (Φ: list mem) (t : ty).

Definition fesic (A : Fesi. Action Φ t) : RTL.Block Φ t :=

let x := IR. Compile Φ t a in

let x := RTL.Compile Φ t x in

let x := CSE.Compile Φ t x in

BDD.Compile Φ t x.

Theorem fesic_correct :

∀ A (Γ : Φ), Front.Next Γ A = RTL.Next Γ (fesic A).

X. Leroy (Inria) Compiler verification FMCAD’14 47 / 52

In closing. . .

X. Leroy (Inria) Compiler verification FMCAD’14 48 / 52

Current status

At this stage of the CompCert experiment, the initial goal — proving
correct a nontrivial compiler — appears feasible.

(Within the limitations of today’s proof assistants such as Coq.)

Towards industrialization (partnership with AbsInt Gmbh).

X. Leroy (Inria) Compiler verification FMCAD’14 49 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Other source languages besides C (already discussed).

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Prove or validate more of the TCB:
lexing, typing, elaboration, assembling, linking, . . .

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Add advanced optimizations, esp. loop optimizations.
Verified validation as the approach of least resistance.

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Increase confidence in the tools used to build CompCert:
Coq’s extraction facility + the Caml compiler.

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Race-free programs + concurrent separation logic (A. Appel et al)
or: racy programs + hardware memory models (P. Sewell et al).

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

Formal specs for architectures & instruction sets, as the missing link between
compiler verification and hardware verification.

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

Some directions for future work

Verifying
program provers

& static analyzers

Other source languages
More

assurance
More

optimizations

“Bootstrap”
(proved extraction)

Shared-memory
concurrency

Connections w/

hardware
verification

The Verasco project: formal verification of a static analyzer based on
abstract interpretation. (Inria, Verimag, Airbus).

X. Leroy (Inria) Compiler verification FMCAD’14 50 / 52

In closing. . .

Critical software deserves the most trustworthy tools that computer
science can provide.

The formal verification of development and verification tools for critical
software

appears within reach,

raises fascinating verification issues,

improves our understanding of the algorithms involved,

and could have practical impact.

X. Leroy (Inria) Compiler verification FMCAD’14 51 / 52

For more information

http://compcert.inria.fr/

Research papers.

Complete source & proofs available for evaluation and research purposes.

Compiler runs on / produces code for
{Linux,MacOSX,Windows+Cygwin} / {PowerPC, ARM, x86}.

X. Leroy (Inria) Compiler verification FMCAD’14 52 / 52

	Trust in compilers
	CompCert
	Under the hood
	Other languages
	Conclusions

