
1/22

Efficient Extraction of Skolem Functions
from QRAT Proofs

Marijn J.H. Heule

Joint work with

Martina Seidl and Armin Biere

FMCAD, October 23, 2014

2/22

Introduction and Challenges

From Clausal Proofs to Skolem Functions

Running Example

Validating Skolem Functions

Experimental Results

Conclusions

3/22

Introduction to QBF

A quantified Boolean formula (QBF) is a propositional formula
where variables are existentially (∃) or universally (∀) quantified.

Consider the formula ∀a ∃b, c .(a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ ¬c)

A model is: a

b

b

c

c

>

>

0

1

1

0

0

1

Consider the formula ∃b ∀a ∃c .(a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ ¬c)

A counter-model is: b

a

a

⊥

c

⊥

⊥

0

1

0

1

0

1

4/22

Introduction to Skolem functions for QBF

A Skolem function fx(Ux) for a QBF formula π.ψ defines the
truth value of an existential variable x based on the set Ux of
universal variables that occur earlier in the prefix than x

Consider the formula ∀a ∃b, c .(a ∨ b) ∧ (¬a ∨ c) ∧ (¬b ∨ ¬c)

A model is: a

b

b

c

c

>

>

0

1

1

0

0

1

The set of Skolem functions F (defining all existentials) is

F = {fb(a) = ¬a, fc(a) = a}

The set of Skolem functions can be much smaller than a model

5/22

Challenges for Quantified Boolean Formulas (QBF)

Preprocessing is crucial to solve most QBF instances efficiently.

Proofs are useful for applications and to validate solver output.

Main challenges regarding QBF and preprocessing [Janota’13]:
1. produce proofs that can be validated in polynomial time;
2. develop methods to validate all QBF preprocessing; and
3. narrow the performance gap between solving with and

without proof generation.

In our IJCAR’14 paper [1], we meet all three challenges!

[1] Marijn J. H. Heule, Matina Seidl and Armin Biere:
A Unified Proof System for QBF Preprocessing.
IJCAR 2014, LNCS 8562, pp 91-106 (2014)

Here we show how to make Skolem functions out of the proofs.

6/22

From Clausal Proofs
to Skolem Functions

7/22

Clausal Proof System

π.ψ

Learn: add a clause
* Preserve satisfiability

Forget: remove a clause
* Preserve unsatisfiablity

Satisfiable
* Forget last clause

Unsatisfiable
* Learn empty clause

init

8/22

Redundancy Concepts in the QRAT Proof System

Informal definitions of the redundancy concepts in the QRAT
proof system. They can be computed in polynomial time.

Definition (Asymmetric Tautologies (AT))
An asymmetric tautology is a clause that becomes a tautology
after adding “hidden literals”. ATs are logically implied by a
formula.

Definition (Quantified Resolution AT (QRAT))
A quantified resolution AT is a clause that contains a literal
for which all “outer resolvents” are ATs.

Definition (Extended Universal Reduction (EUR))
A universal literal is redundant if assigning it to false cannot
influence the value of universal literals.

9/22

Rules of the QRAT Proof System

Rule Preconditions Postconditions

(N1)
π.ψ

π.ψ\{C}
C is an asymmetric
tautology

(N2)
π.ψ

π′.ψ ∪ {C}
C is an asymmetric
tautology

π′ = π∃X with
X = {x |x ∈vars(C), x 6∈vars(π)}

(E1)
π.ψ

π.ψ\{C}
C ∈ ψ, Q(π, l) = ∃
C has QRAT on l w.r.t. ψ

(E2)
π.ψ

π′.ψ ∪ {C}
C 6∈ ψ, Q(π, l) = ∃
C has QRAT on l w.r.t. ψ

π′ = π∃X with
X = {x |x ∈vars(C), x 6∈vars(π)}

(U1)
π.ψ ∪ {C}

π.ψ ∪ {C\{l}}
l ∈C , Q(π, l) = ∀, ¬l 6∈ C ,
C has QRAT on l w.r.t. ψ

(U2)
π.ψ ∪ {C}

π.ψ ∪ {C\{l}}
l ∈C , Q(π, l) = ∀, ¬l 6∈ C ,
C has EUR on l w.r.t. ψ

9/22

Rules of the QRAT Proof System

Rule Preconditions Postconditions

(N1)
π.ψ

π.ψ\{C}
C is an asymmetric
tautology

(N2)
π.ψ

π′.ψ ∪ {C}
C is an asymmetric
tautology

π′ = π∃X with
X = {x |x ∈vars(C), x 6∈vars(π)}

(E1)
π.ψ

π.ψ\{C}
C ∈ ψ, Q(π, l) = ∃
C has QRAT on l w.r.t. ψ

(E2)
π.ψ

π′.ψ ∪ {C}
C 6∈ ψ, Q(π, l) = ∃
C has QRAT on l w.r.t. ψ

π′ = π∃X with
X = {x |x ∈vars(C), x 6∈vars(π)}

(U1)
π.ψ ∪ {C}

π.ψ ∪ {C\{l}}
l ∈C , Q(π, l) = ∀, ¬l 6∈ C ,
C has QRAT on l w.r.t. ψ

(U2)
π.ψ ∪ {C}

π.ψ ∪ {C\{l}}
l ∈C , Q(π, l) = ∀, ¬l 6∈ C ,
C has EUR on l w.r.t. ψ

Preserves Logical Equivalence

Preserves Logical Equivalence

Weakens the Formula

Strengthens the Formula

Strengthens the Formula

Strengthens the Formula

10/22

Pseudo-Code of Skolem Function Computation

ComputeSkolem (prefix π, QRAT proof P)
1 let ψ be an empty formula
2 foreach existential variable e do fe(U) := ∗ // initialize F

3 while (P is not empty) do
4 〈rule R, clause C , literal l〉 := P.pop()
5 if (R = E1) then
6 let e be var(l)
7 fe(U) := IfThenElse(F (OF(π, ψ, l))), polarity(l), fe(U))

8 if (R = E1 or R = N1) then // Forget rules
9 ψ := ψ ∪ {C}

10 if (R = E2 or R = N2) then // Learn rules
11 ψ := ψ \ {C}

11/22

Adding a Skolem Function

The outer clause of D w.r.t. a literal l under prefix π is:

OC(π,D, l) := {k | k ∈ D, π(k) ≤ π(l), and k 6= l}

The outer formula of ψ w.r.t. a literal l under prefix π is:

OF(π, ψ, l) := {OC(π,D,¬l) | D ∈ ψ,¬l ∈ D}

How to understand

fe(U) := IfThenElse(F (OF(π, ψ, l))), polarity(l), fe(U)) ?

If a clause C has QRAT on literal l ∈ C w.r.t. ψ, then
I any assignment that falsifies OF(π, ψ, l) satisfies C
I if OF(π, ψ, l) is satisfied, we can safely assign l to true

12/22

Running Example

13/22

Running Example

Consider again π.ψ := ∀a ∃b, c .(a ∨ b)∧ (¬a ∨ c)∧ (¬b ∨¬c)

QRAT proof P using the rules E1 (Forget) and E2 (Learn):

E2(¬a∨¬b),E1(¬a∨c),E1(¬b∨¬c),E1(¬a∨¬b),E1(a∨b)

Rule ψ OF(π, ψ, l) Skolem set F

init ∅ n\a fb(a) = ∗, fc(a) = ∗

E1(a ∨ b) ∅ ∅ fb(a) = >, fc(a) = ∗
E1(¬a ∨ ¬b) (a ∨ b) (a) fb(a) = ¬a, fc(a) = ∗

E1(¬b ∨ ¬c) (a ∨ b) ∧
(¬a ∨ ¬b) ∅ fb(a) = ¬a, fc(a) = ⊥

E1(¬a ∨ c)
(a ∨ b) ∧
(¬a∨¬b) ∧
(¬b ∨ ¬c)

(¬b) fb(a) = ¬a, fc(a) = ¬fb(a)

13/22

Running Example

Consider again π.ψ := ∀a ∃b, c .(a ∨ b)∧ (¬a ∨ c)∧ (¬b ∨¬c)

QRAT proof P using the rules E1 (Forget) and E2 (Learn):

E2(¬a∨¬b),E1(¬a∨c),E1(¬b∨¬c),E1(¬a∨¬b),E1(a∨b)

Rule ψ OF(π, ψ, l) Skolem set F

init ∅ n\a fb(a) = ∗, fc(a) = ∗
E1(a ∨ b) ∅ ∅ fb(a) = >, fc(a) = ∗

E1(¬a ∨ ¬b) (a ∨ b) (a) fb(a) = ¬a, fc(a) = ∗

E1(¬b ∨ ¬c) (a ∨ b) ∧
(¬a ∨ ¬b) ∅ fb(a) = ¬a, fc(a) = ⊥

E1(¬a ∨ c)
(a ∨ b) ∧
(¬a∨¬b) ∧
(¬b ∨ ¬c)

(¬b) fb(a) = ¬a, fc(a) = ¬fb(a)

13/22

Running Example

Consider again π.ψ := ∀a ∃b, c .(a ∨ b)∧ (¬a ∨ c)∧ (¬b ∨¬c)

QRAT proof P using the rules E1 (Forget) and E2 (Learn):

E2(¬a∨¬b),E1(¬a∨c),E1(¬b∨¬c),E1(¬a∨¬b),E1(a∨b)

Rule ψ OF(π, ψ, l) Skolem set F

init ∅ n\a fb(a) = ∗, fc(a) = ∗
E1(a ∨ b) ∅ ∅ fb(a) = >, fc(a) = ∗
E1(¬a ∨ ¬b) (a ∨ b) (a) fb(a) = ¬a, fc(a) = ∗

E1(¬b ∨ ¬c) (a ∨ b) ∧
(¬a ∨ ¬b) ∅ fb(a) = ¬a, fc(a) = ⊥

E1(¬a ∨ c)
(a ∨ b) ∧
(¬a∨¬b) ∧
(¬b ∨ ¬c)

(¬b) fb(a) = ¬a, fc(a) = ¬fb(a)

13/22

Running Example

Consider again π.ψ := ∀a ∃b, c .(a ∨ b)∧ (¬a ∨ c)∧ (¬b ∨¬c)

QRAT proof P using the rules E1 (Forget) and E2 (Learn):

E2(¬a∨¬b),E1(¬a∨c),E1(¬b∨¬c),E1(¬a∨¬b),E1(a∨b)

Rule ψ OF(π, ψ, l) Skolem set F

init ∅ n\a fb(a) = ∗, fc(a) = ∗
E1(a ∨ b) ∅ ∅ fb(a) = >, fc(a) = ∗
E1(¬a ∨ ¬b) (a ∨ b) (a) fb(a) = ¬a, fc(a) = ∗

E1(¬b ∨ ¬c) (a ∨ b) ∧
(¬a ∨ ¬b) ∅ fb(a) = ¬a, fc(a) = ⊥

E1(¬a ∨ c)
(a ∨ b) ∧
(¬a∨¬b) ∧
(¬b ∨ ¬c)

(¬b) fb(a) = ¬a, fc(a) = ¬fb(a)

13/22

Running Example

Consider again π.ψ := ∀a ∃b, c .(a ∨ b)∧ (¬a ∨ c)∧ (¬b ∨¬c)

QRAT proof P using the rules E1 (Forget) and E2 (Learn):

E2(¬a∨¬b),E1(¬a∨c),E1(¬b∨¬c),E1(¬a∨¬b),E1(a∨b)

Rule ψ OF(π, ψ, l) Skolem set F

init ∅ n\a fb(a) = ∗, fc(a) = ∗
E1(a ∨ b) ∅ ∅ fb(a) = >, fc(a) = ∗
E1(¬a ∨ ¬b) (a ∨ b) (a) fb(a) = ¬a, fc(a) = ∗

E1(¬b ∨ ¬c) (a ∨ b) ∧
(¬a ∨ ¬b) ∅ fb(a) = ¬a, fc(a) = ⊥

E1(¬a ∨ c)
(a ∨ b) ∧
(¬a∨¬b) ∧
(¬b ∨ ¬c)

(¬b) fb(a) = ¬a, fc(a) = ¬fb(a)

14/22

Validating Skolem Functions

15/22

Checks to Validate Skolem Functions

Two tests are required to validate Skolem functions:

1. Can we falsify a clause in formula ψ while satisfying the
Skolem functions F (U)?

solve(¬ψ ∧ F (U)) = UNSAT?

2. Check that all Skolem functions depend only on universal
variables that occur earlier in the prefix.

Problem: our method could create a Skolem function

fx(Ux) := fy (Uy) with π(x) < π(y)

Solution: convert Skolem functions to
And-Inverter-Graphs (AIGs) and check for reachability.

16/22

Check Reachability in AIGs
Consider the formula π.ψ:

∀a∃b∀c∃d , e.
(a ∨ b) ∧

(¬a ∨ ¬b ∨ d) ∧
(a ∨ c ∨ ¬d) ∧

(a ∨ ¬b ∨ ¬e) ∧
(¬a ∨ c ∨ e) ∧
(¬c ∨ ¬e)

Skolem functions for π.ψ:

2

a

6

c

10b d

e

Our algorithm could have produced fb(a) := fd(a, c), but that
is not problematic because fd(a, c) does not depend on c .

How to simplify the circuit and preserve the dependencies?

17/22

Experimental Results

18/22

Experimental Results: Solving versus Extraction

We used the benchmarks of QBF Eval 2012 as the test set.

First, we compare the costs of solving true QBF formulas and
the costs to extract Skolem functions from the proofs

I Extraction of Skolem functions includes proof validation

Summary of the results of the first experiment:
I Extraction costs of Skolem functions is comparable to
solving time. The theoretical worst-case is polynomial.

I The size of the set of Skolem functions is linear in the
solving time: a few megabyte (AAG format) per second.

I Validating the Skolem functions is comparable to the
extraction time, but can be an order of magnitude slower.

19/22

Experimental Results: Comparison with other Tools

solver sol-# sol-t ch-# ch-t cer-s
bloqqer+QRAT 32 1 32 47 1851
bloqqer+RES 22 1 22 1 861
bloqqer+RES+depQBF 28 113 27 13 1040
depQBF 2 843 2 1 224
ebdd 15 491 7 118 409479
squolem 16 465 16 2 382
sKizzo 23 275 23 1 108750
sol-#: # solved formulas, sol-t: avg. solving time (s),
ch-#: checked certificates, ch-t: avg. checking time (s)
cer-s: avg. certificate size (kilobyte)

20/22

Experimental Results: Size Comparison

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

b
lo

q
q
e
r

+
 R

E
S
 +

 D
e
p
Q

B
F

bloqqer + QRAT

Above the diagonal: Skolem functions from QRAT proofs are smaller

21/22

Conclusions

22/22

Conclusions

Compute Skolem functions out of QRAT proofs:
I All QBF preprocessing techniques can be stated in QRAT
I The proof size is polynomial in solving time (worst-case)
I We showed how to convert QRAT into Skolem functions
I The size of Skolem functions is relatively small: Linear in
the size of proofs in practice, polynomial in worst-case

Directions for future work:
I How to state all QBF solving techniques in QRAT?

I That would allow Skolem functions for the full QBF tool chain
I Shrink Skolem functions using circuit simplification

I There are strong circuit simplification tools around, e.g. ABC

Thanks!

22/22

Conclusions

Compute Skolem functions out of QRAT proofs:
I All QBF preprocessing techniques can be stated in QRAT
I The proof size is polynomial in solving time (worst-case)
I We showed how to convert QRAT into Skolem functions
I The size of Skolem functions is relatively small: Linear in
the size of proofs in practice, polynomial in worst-case

Directions for future work:
I How to state all QBF solving techniques in QRAT?

I That would allow Skolem functions for the full QBF tool chain
I Shrink Skolem functions using circuit simplification

I There are strong circuit simplification tools around, e.g. ABC

Thanks!

	Introduction and Challenges
	From Clausal Proofs to Skolem Functions
	Running Example
	Validating Skolem Functions
	Experimental Results
	Conclusions

