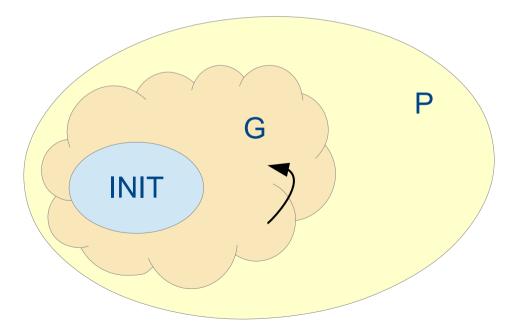
Small Inductive Safe Invariants

Alexander Ivrii, Arie Gurfinkel, Anton Belov

Introduction

- Consider a verification problem (INIT, TR, P)
- In the case that P holds, a Model Checker may produce a proof in terms of a safe inductive invariant
- A safe inductive invariant is a set of states G, satisfying:
 - G contains all the initial states
 - All the transitions from G lead back to G
 - G is contained in the set of states where P holds



Introduction

- Equivalently, a safe inductive invariant is a Boolean function G, satisfying:
 - INIT \Rightarrow G
 - $TR \land G \Rightarrow G'$ (inductive)
 - $\neg G \Rightarrow P \qquad (safe)$
- Following IC3, a recent trend is to produce such an invariant as a conjunction of many simple lemmas (such as clauses)

- $G = C_1 \wedge \ldots \wedge C_n$

• A typical invariant may contain 10,000s of clauses

Introduction

- Our motivation is that smaller inductive invariants are more useful:
 - They are relevant in the context of FAIR [Bradley et al. 2011]
 - The cited paper introduces the problem and presents a solution
 - They produce better abstractions
 - A state variable not in the invariant is irrelevant for correctness
 - They increase user comprehension
 - They improve regression verification
- In this work we minimize inductive invariants by removing clauses
 - Look for minimal (or small) subsets
 - "Minimal" does not mean "of minimum size" (the latter is harder)

Problem Statement

• Following the standard (abuse of) notation for CNFs, we denote the conjunction of clauses as a set (and vice versa)

- Minimal Safe Inductive Invariants (MSIS): Given a safe inductive invariant {C₁, ..., C_n}, find a subset {C_{i1}, ..., C_{ik}} of {C₁, ..., C_n}, so that:
 - {C_{i1}, ..., C_{ik}} is also a safe inductive invariant
 - {C_{i1}, ..., C_{ik}} is minimal (no proper subset of {C_{i1}, ..., C_{ik}} is safe and inductive)

• We want the solution to be efficient (ideally the time to minimize a safe inductive invariant should be much smaller than to compute it)

Why finding an MSIS is not simple

- Recall that in particular we need to make sure that
 - TR \land C_{i1} \land ... \land C_{ik} \Rightarrow C_{i1} \land ... \land C_{ik}
- This query is non-monotone: each clause appears both as a premise and a conclusion
 - With fewer clauses, we need to prove less, but we can also assume less
- For example, it might be that:
 - $\{C_1, C_2, C_3, C_4\}$ is inductive,
 - $\{C_1, C_2, C_3\}$ is not inductive,
 - $\{C_1, C_2\}$ is inductive

Basic MSIS algorithm

- First, we present the approach described in [Bradley et al. 2011]
- The main idea is to tentatively remove a clause, and then to iteratively tentatively remove all no longer implied clauses, until:
 - Either a smaller inductive invariant is obtained
 - We can restrict to this smaller invariant
 - Or the property itself is no longer implied
 - We should restore all the tentatively removed clauses
- Repeat for every clause

Basic MSIS algorithm – Example

- Initially: {C₁, C₂, C₃, C₄, C₅, C₆} is a safe inductive invariant for P
- Remove C_1 : { C_2, C_3, C_4, C_5, C_6 }
 - Suppose that C_2' and C_4' are no longer implied
- Remove C_2 and C_4 as well (as they cannot be part of any MSIS of { C_2 , C_3 , C_4 , C_5 , C_6 }) : { C_3 , C_5 , C_6 }
 - Suppose that C₅' is no longer implied
- Remove C₅ as well :

 $\{C_{3}, C_{6}\}$

- Suppose that C_6 and P are no longer implied
- It follows that C₁ cannot be removed (must be present in every MSIS of {C₁, C₂, C₃, C₄, C₅, C₆})
- Restore all removed clauses

Basic MSIS algorithm – Example

- Currently:
 - { C_1 , C_2 , C_3 , C_4 , C_5 , C_6 } is a safe inductive invariant for P
 - C_1 cannot be removed
- Remove C₂:

$$\{C_1, C_3, C_4, C_5, C_6\}$$

- Suppose that C_3' and C_6' are no longer implied
- Remove C_3 and C_6 as well : { C_1, C_4, C_5 }
 - Suppose that all remaining clauses and P are implied
- It follows that $\{C_1, C_4, C_5\}$ is a smaller safe inductive invariant

Basic MSIS algorithm – Example

- Currently:
 - $\{C_1, C_4, C_5\}$ is a safe inductive invariant for P
 - C_1 cannot be removed
- Proceed with the remaining clauses in a similar fashion

Basic MSIS algorithm

- Denote by MaxInductiveSubset(S, P) the procedure that computes the maximum inductive subset of S, aborting if it does not imply P
- Given a safe inductive invariant G for P, in the basic approach we
 - Iteratively
 - Choose a not-yet-considered clause C in G
 - Compute X = MaxInductiveSubset(G\C, P)
 - If X is safe (X implies P), then replace G by X
- Claim: the described algorithm computes an MSIS of G
- Unfortunately, this algorithm is not efficient
 - A large number of SAT calls is required (~quadratic)
 - Does repeated work

What can we do better?

- Efficiently under-approximate an MSIS
 - Find clauses that must be present in any MSIS of G
- Efficiently over-approximate an MSIS
 - Remove clauses that are not part of some MSIS of G
- Optimize the basic MSIS algorithm
 - Minimizing the amount of wasted work
 - Taking clause dependency into account
- Combine under- and over- approximations with the optimized MSIS algorithm

Under-Approximation

- Given a safe inductive invariant G = {C₁, ..., C_n}, we say that a clause C_i is safe necessary if C_i is present in every MSIS of G.
- We exploit the following observations:
 - Given a clause C in G, if (G \ C) ∧ TR ⇒ P does not hold then C is safe necessary
 - Given a clause C in G and a safe necessary clause D (different from C), if (G \ C) ∧ TR ⇒ D' does not hold then C is safe necessary
- The under-approximation algorithm iteratively applies the above two
 observations until fix-point
- The algorithm can be implemented very efficiently using an incremental SAT-solver

Under-Approximation – Example

- Initially:
 - $\{C_1, C_2, C_3, C_4, C_5, C_6\}$ is a safe inductive invariant for P
 - No clauses are marked as necessary
- Check if there is an unmarked clause without which P is not implied
 - Suppose that we find C_4
 - Mark C_4 as necessary
- Check if there is an unmarked clause without which P is not implied
 - Suppose that we find C_5
 - Mark C₅ as necessary
- Check if there is an unmarked clause without which P is not implied
 - Suppose that we find none

Under-Approximation – Example

- Check if there is an unmarked clause without which C_4 is not implied
 - Suppose that we find C_1
 - Mark C_1 as necessary
- Check if there is an unmarked clause without which C₄' is not implied
 - Suppose that we find none
- Check if there is an unmarked clause without which C₅' is not implied
 - Suppose that we find none
- Check if there is an unmarked clause without which C₁' is not implied
 - Suppose that we find none
- Therefore: C_1 , C_4 , C_5 belong to every MSIS of { C_1 , C_2 , C_3 , C_4 , C_5 , C_6 }

Under-Approximation

 Claim: the described algorithm computes a set of clauses that must be present in every MSIS of G

(however, it does not compute all such clauses)

- The algorithm makes only a linear number of SAT calls (even in the size of the solution)
- The algorithm can be further improved if some clauses are initially known to be necessary
- For IC3 proofs, the algorithm is very efficient and usually marks a large number of clauses

Over-Approximation

- Given a safe inductive invariant G = {C₁, ..., C_n} and two subsets A and B of G, we say that A inductively supports B (or equivalently that B is supported by A) if TR ∧ A ∧ B ⇒ B'
- Greedily compute a safe inductive subset of G as follows:
 - Choose any minimal subset A₁ of clauses needed to support P (and any necessary clauses, if known)
 - Choose any minimal subset A₂ of clauses needed to inductively support A₁
 - Choose any minimal subset A₃ of clauses needed to inductively support A₂
 - Stop when the last computed set is empty

.....

• The over-approximation is the union of all the sets considered

Over-Approximation

- Claim: the described algorithm computes a safe inductive subset of G (however, it is not guaranteed to be minimal)
- The algorithm makes only a linear number of MUS calls
- The quality and the run-time of the algorithm are greatly improved
 - If we compute minimal supporting sets
 - If we follow the presented recursive approach
 - Instead of computing a global unsatisfiable core as suggested in [Bradley et al. 2011]
 - If we consider all the clauses of A_i together, rather than 1-by-1
 - If some of the clauses are initially marked as necessary

Optimized MSIS algorithm

- An immediate optimization to the basic MSIS algorithm consists of
 - Marking necessary clauses as soon as they are discovered, and
 - Aborting the computation as soon as one of the necessary clauses becomes non-implied
- Given a safe inductive invariant G for P, in the optimized approach we
 - Keep track of necessary clauses N
 - Iteratively
 - Choose a not-yet-considered clause C in G\N
 - Compute X = MaxInductiveSubset(G\C, P∪N')
 - If X is safe, then replace G by X
 - Otherwise, add C to N

Optimized MSIS algorithm – Example

- Consider the previous example:
 - $\{C_1, C_4, C_5\}$ is a safe inductive invariant for P
 - C_1 cannot be removed
- Remove C₄:
 - Suppose that C_1 is no longer implied
 - The basic algorithm removes C_1
 - The optimized algorithm aborts immediately
- Remove C₅: {C₁, C₄}
 - Suppose that C_4' is no longer implied
 - The basic algorithm removes C_4 (and then possibly C_1 , etc)
 - The optimized algorithm aborts immediately

 $\{C_1, C_5\}$

Optimized MSIS algorithm

- The optimized algorithm is significantly better than the basic algorithm
- Moreover, the optimized algorithm is significantly improved when some of the clauses are initially marked as necessary
- However, the optimized algorithm still requires a quadratic number of SAT queries in the worst case:
 - Queries of the form "which clauses become not implied if certain other clauses are removed?"
 - Each time that we remove a clause C_i from a safe inductive invariant, might need to make a linear number of such queries
 - Might need to process a linear number of clauses

B.I.G. MSIS algorithm

- The B.I.G. algorithm makes use the following observation: given a safe inductive invariant G and a clause C
 - Either G \ C remains a safe inductive invariant
 - Or C is safe necessary for P or for some other clause in G
- The B.I.G. algorithm makes only a linear number of SAT queries
- The technique is inspired by the Binary Implication Graphs used in SAT-solvers
- Purely by coincidence, B.I.G. also represents the authors' initials ;-)

- Initially: {C₁, C₂, C₃, C₄, C₅, C₆} is a safe inductive invariant for P
- Remove C_1 : { C_2, C_3, C_4, C_5, C_6 }
 - Suppose that C₄' is no longer implied (and possibly other clauses)
 - We infer: C_1 is needed for C_4
 - Equivalently: if C_4 is in the invariant, then C_1 is in the invariant
 - Denote this graphically by $\{C_1\} \rightarrow \{C_4\}$
- Restore C_1 and remove C_4 : { C_1, C_2, C_3, C_5, C_6 }
 - Suppose that C_5' is no longer implied (and possibly other clauses)
 - We infer: C_4 is needed for C_5
 - Denote this graphically by $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$ (note transitivity)
- Restore C₄ and remove C₅

- Currently:
 - C_5 is tentatively removed:
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

- Case I: P and all remaining clauses are still implied
 - In this case, can permanently remove the (last) clause C_5
 - Know: $\{C_1\} \rightarrow \{C_4\}$
 - Make the query for C_4

- Currently:
 - C_5 is tentatively removed:
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

- <u>Case II</u>: P (or one of known necessary clauses) is not implied
 - In this case, all of the clauses C_1 , C_4 , C_5 are necessary
 - Make the query for some new clause

- Currently:
 - C_5 is tentatively removed:
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

- <u>Case III</u>: A new clause (for example C₆) is not implied
 - Infer: C_5 is needed for C_6
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\} \rightarrow \{C_6\}$
 - Make the query for C_6

- Currently:
 - C_5 is tentatively removed:
 - Know: $\{C_1\} \rightarrow \{C_4\} \rightarrow \{C_5\}$

- <u>Case IV</u>: A previous clause (for example C₄) is not implied:
 - Either
 - All clauses between C₄ and C₅ are in the final invariant
 - None of the clauses between C₄ and C₅ are in the invariant
 - Know: $\{C_1\} \rightarrow \{C_4, C_5\}$
 - Make the query for $\{C_4, C_5\}$

Combined MSIS algorithm

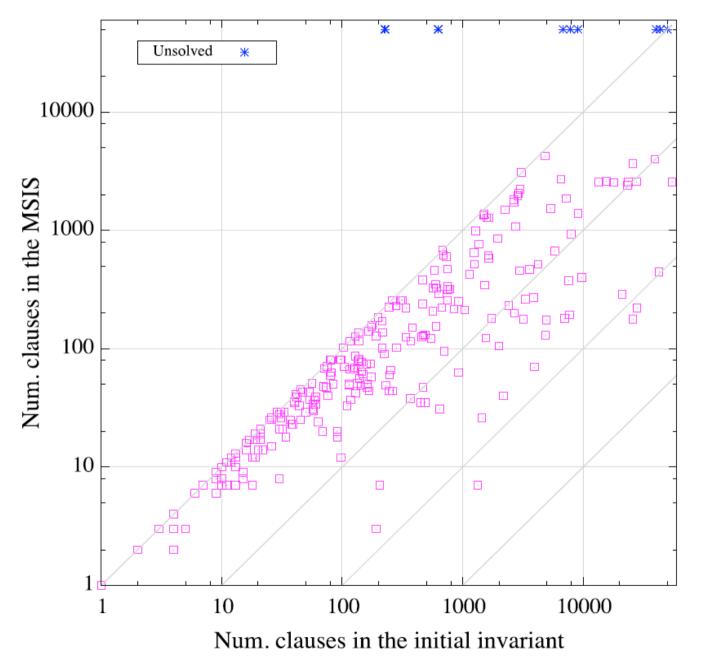
- Experimentally the following combination of the presented ideas works the best
- 1) Run under-approximation
- About 70% of the final MSIS clauses are identified in this stage
- 2) Run over-approximation (with marked necessary clauses)
 - After this stage over-approximates the final MSIS by only 4%
 - In many cases already produces an MSIS
- 3) Run under-approximation (on the reduced invariant)
 - About 90% of the final MSIS clauses are identified
- 4) Run Optimized MSIS or B.I.G. MSIS on the remaining clauses
 - On average improves the basic MSIS algorithm by 10 to 1000 times

Overall Improvement in Run-Time



Thank You!

Reduction in the Number of Clauses



Under-Approximation – Implementation

- Introduce an auxiliary variable a, for every clause C, of G
- Load TR \land (a₁ \Leftrightarrow C₁) \land ... \land (a_n \Leftrightarrow C_n) into the solver
- Encode the constraint "at most one out of $\neg a_1, \ldots, \neg a_n$ is true"
- Keep unprocessed elements in a queue Q, initially Q = {P}
- Iteratively:
 - Consider the first element q in Q
 - Solve, passing –q as assumptions
 - If SAT:
 - Exactly one of the a_i evaluates to false
 - Mark the corresponding C_i as necessary and set $a_i = true$
 - Add C_i' to Q
 - If UNSAT:
 - Proceed to the next element in Q