
Response property checking via distributed state space
exploration

Brad Bingham and Mark Greenstreet
{binghamb, mrg}@cs.ubc.ca

Department of Computer Science
University of British Columbia, Canada

October 24, 2014

FMCAD 2014

Motivation: Liveness + Explicit-State

High-Level Models: use Murϕ to describe a system

Liveness: nice to verify, but challenging in practice

Distributed Model Checking: memory and speed scalability

Explicit-State: easy to distribute/parallelize

(Also outperforms symbolic methods for certain models)

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Bingham/Greenstreet (UBC) Response property checking October 24/2014 2 / 21

Outline

1 Response and Fairness

2 High Level Algorithm

3 Our Implementation
Distributed MC for Safety
Adaptation for Response
One Optimization (of many)

4 Results

Bingham/Greenstreet (UBC) Response property checking October 24/2014 3 / 21

Response Properties

reachable

qinit p

“Will there always be a response?” ≡ “Does every fair path from
each reachable p-state lead to a q-state?”

p ≡ “request issued”; q ≡ “request granted”
In LTL: fair ⇒ 2(p → 3q)
Most common/simplest notion of liveness

Bingham/Greenstreet (UBC) Response property checking October 24/2014 4 / 21

Response Properties

reachable

q

UNFAIR

UNFAIR

init p

“Will there always be a response?” ≡ “Does every fair path from
each reachable p-state lead to a q-state?”

p ≡ “request issued”; q ≡ “request granted”
In LTL: fair ⇒ 2(p → 3q)
Most common/simplest notion of liveness

Bingham/Greenstreet (UBC) Response property checking October 24/2014 4 / 21

Response and Strongly Connected Components (SCCs)

reachable

qp

pending

SCC

SCC

init

pending ≡ “states where the request is outstanding”

The question fair ⇒ 2(p → 3q)? Is equivalent to asking “Is there a
fair SCC within pending?”

Terminology: fair SCC ≡ FSCC

Bingham/Greenstreet (UBC) Response property checking October 24/2014 5 / 21

Fairness

In practice, we use fairness assumptions that reflect the underlying
implementation

Excludes unrealistic counterexamples

We use action-based fairness:

An action a is a set of system transitions
a is called strongly-fair (aka compassionate; a ∈ C) if
[a enabled ∞-often] ⇒ [a fires ∞-often]
a is called weakly-fair (aka just; a ∈ J) if
[a presistently enabled] ⇒ [a fires]

Note: verifying fair ⇒ 2(p → 3q) with standard Büchi automata
LTL MC approach will blow up

i.e., property automata with size exponential in |C ∪ J |

Bingham/Greenstreet (UBC) Response property checking October 24/2014 6 / 21

Fairness

In practice, we use fairness assumptions that reflect the underlying
implementation

Excludes unrealistic counterexamples

We use action-based fairness:

An action a is a set of system transitions
a is called strongly-fair (aka compassionate; a ∈ C) if
[a enabled ∞-often] ⇒ [a fires ∞-often]
a is called weakly-fair (aka just; a ∈ J) if
[a presistently enabled] ⇒ [a fires]

Note: verifying fair ⇒ 2(p → 3q) with standard Büchi automata
LTL MC approach will blow up

i.e., property automata with size exponential in |C ∪ J |

Bingham/Greenstreet (UBC) Response property checking October 24/2014 6 / 21

Outline

1 Response and Fairness

2 High Level Algorithm

3 Our Implementation
Distributed MC for Safety
Adaptation for Response
One Optimization (of many)

4 Results

Bingham/Greenstreet (UBC) Response property checking October 24/2014 7 / 21

FSCCs

Both green actions and pink actions are strongly fair

pending ge

a b c

d

f h

Bingham/Greenstreet (UBC) Response property checking October 24/2014 8 / 21

FSCCs

Both green actions and pink actions are strongly fair

FSCC

pending g

a b c

d

f h

e

Bingham/Greenstreet (UBC) Response property checking October 24/2014 8 / 21

Algorithm Example

Both green actions and pink actions are strongly fair

Purple Blob ≡ MaybeFair

pending

h

ge

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending

h

ge

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending

h

ge

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending g

h

e

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending g

h

e

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending g

h

e

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending g

h

e

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Algorithm Example

Both green actions and pink actions are strongly fair
Purple Blob ≡ MaybeFair

pending g

h

e

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉

Bingham/Greenstreet (UBC) Response property checking October 24/2014 9 / 21

Definition: Predecessor Actions (PAs)

Suppose H ⊆ pending . Let 〈H〉 be the subgraph of the transition
graph induced by H

The Predecessor Actions for state s ∈ H, are actions appearing on
some path that

1 is contained within 〈H〉; and
2 ends at s

Observe: If s lies on a FSCC in 〈H〉, then all enabled strongly-fair
actions at s are PAs

Contrapositive: If there ∃ a strongly-fair action enabled at s that
isn’t a PA, then s does NOT lie on a FSCC in 〈H〉

...and ∴ remove s from consideration!

Bingham/Greenstreet (UBC) Response property checking October 24/2014 10 / 21

Definition: Predecessor Actions (PAs)

Suppose H ⊆ pending . Let 〈H〉 be the subgraph of the transition
graph induced by H

The Predecessor Actions for state s ∈ H, are actions appearing on
some path that

1 is contained within 〈H〉; and
2 ends at s

Observe: If s lies on a FSCC in 〈H〉, then all enabled strongly-fair
actions at s are PAs

Contrapositive: If there ∃ a strongly-fair action enabled at s that
isn’t a PA, then s does NOT lie on a FSCC in 〈H〉

...and ∴ remove s from consideration!

Bingham/Greenstreet (UBC) Response property checking October 24/2014 10 / 21

Outline

1 Response and Fairness

2 High Level Algorithm

3 Our Implementation
Distributed MC for Safety
Adaptation for Response
One Optimization (of many)

4 Results

Bingham/Greenstreet (UBC) Response property checking October 24/2014 11 / 21

Distributed MC[SD97] Overview

Simple approach to distributing explicit-state model checking (for
safety)

Use uniform random hash function owner : States → PIDs
PID i only stores states s such that owner(s) = i .

Each PID maintains two data structures:

V: Set of (owned) states visited so far
WQ: List of states waiting to be expanded

Start: compute initial states and send to their owners

Iterate: state sucessors are sent to their respective owners

Termination: when each WQ is empty and no messages are in flight

Bingham/Greenstreet (UBC) Response property checking October 24/2014 12 / 21

Message Flow

L
A

N
/N

oC
to

ot
h

er
P

ro
ce

ss
es

state s

where owner(s) = i

WORKER PROCESS i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute sucessors of s

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 13 / 21

Message Flow

L
A

N
/N

oC
to

ot
h

er
P

ro
ce

ss
es

state s

where owner(s) = i

WORKER PROCESS i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute sucessors of s

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 13 / 21

Message Flow

L
A

N
/N

oC
to

ot
h

er
P

ro
ce

ss
es

state s

where owner(s) = i

WORKER PROCESS i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute sucessors of s

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 13 / 21

Hash Table Considerations

For safety: use a Murϕ hash table implementation that stores visited
states as 40-bit values

Chance of a missed state, but typically it’s a tiny chance (≈ 10−10)
Once a state is inserted, it can’t be recovered from its hash value

For response: necessary to track extra information about states, for
example

Is it a pending -state?
Is it in MaybeFair?
What are its predecessor actions, relative to 〈MaybeFair〉?

We use ≈ 16 + |C ∪ J | extra bits per state

Bingham/Greenstreet (UBC) Response property checking October 24/2014 14 / 21

Tracking Predecessor Actions

Suppose C = {a1, ...ak}
“Tag” each hash table entry with PAs, which is a subset of C

(plus a few other bookkeeping bits)

For states in s ∈ MaybeFair : initialize PA(s) to ∅
Message Passing:

Expand state s: if (s, s ′) ∈ ai , send msg [s ′,PA(s) ∪ {ai}] to owner(s ′)
Receive msg [s ′, F]: PA(s ′) := PA(s ′) ∪ F ; expand state s ′ if PA(s ′)
changed.
Continue until no further expansions.

(A similar idea works for weakly-fair actions)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 15 / 21

Tracking Predecessor Actions

Suppose C = {a1, ...ak}
“Tag” each hash table entry with PAs, which is a subset of C

(plus a few other bookkeeping bits)

For states in s ∈ MaybeFair : initialize PA(s) to ∅
Message Passing:

Expand state s: if (s, s ′) ∈ ai , send msg [s ′,PA(s) ∪ {ai}] to owner(s ′)
Receive msg [s ′, F]: PA(s ′) := PA(s ′) ∪ F ; expand state s ′ if PA(s ′)
changed.
Continue until no further expansions.

(A similar idea works for weakly-fair actions)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 15 / 21

PA Propagation Example

c

d

b

e

PA: {a2, a7}

PA: {a2, a3, a5, a7}

a7 taken

a
4 taken

PA: {a1, a5}

a1
tak

en
PA: ∅

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

c

d

e

b

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a7 taken

a
4 taken

{a1, a5}

a1
tak

en
∅

Expand!

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

c

d

e

b

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en
∅

Expand!
a7 taken

{a1, a4, a5}

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

d

e

b

c

∅

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en

a7 taken

{a1, a4, a5}

Expand!

{a2, a3, a5, a7}

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

d

e

b

c

∅

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en

a7 taken

{a1, a4, a5}

{a2, a3, a5, a7}
Expand!

{a1, a2, a4, a5, a7}

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

e

b

c

d

∅

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en

a7 taken

{a1, a4, a5}

{a2, a3, a5, a7}

{a1, a2, a4, a5, a7}

Expand!

{a1,
a2,

a7}

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

e

b

c

d

∅

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en

a7 taken

{a1, a4, a5}

{a2, a3, a5, a7}

{a1, a2, a4, a5, a7}{a1,
a2,

a7}

No change,

no expand needed

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

PA Propagation Example

e

b

c

d

∅

{a2, a7}

{a2, a3, a5, a7}

{a
1 , a

4 , a
5}

a
4 taken

{a1, a5}

a1
tak

en

a7 taken

{a1, a4, a5}

{a2, a3, a5, a7}

{a1, a2, a4, a5, a7}{a1,
a2,

a7}

No change,

no expand needed

Strongly-fair actions C = {a1, ..., a7}
(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 16 / 21

Optimization: The “Kernel”

Idea: save set of states K to disk so that MaybeFair can be generated
through reachability starting with K

Call K a kernel if MaybeFair ⊆ Reach(K)

i.e., MaybeFair is reachable starting from K

Note: both initial states I and p-states are kernels for all subsets of
pending

To maintain K :

Initialize K to p-states;
If s ∈ K is removed from MaybeFair , then

Remove s from K ;
Insert successors(s) ∩MaybeFair into K

Bingham/Greenstreet (UBC) Response property checking October 24/2014 17 / 21

Kernel Optimization

p pending

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

MaybeFair

kernel

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

kernel

MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

kernel

MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

kernel

M
ay

be
F

ai
r

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

MaybeFair
ke

rn
el

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

ke
rn

el

MaybeFair

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Kernel Optimization

pe
nd

in
g

Bingham/Greenstreet (UBC) Response property checking October 24/2014 18 / 21

Outline

1 Response and Fairness

2 High Level Algorithm

3 Our Implementation
Distributed MC for Safety
Adaptation for Response
One Optimization (of many)

4 Results

Bingham/Greenstreet (UBC) Response property checking October 24/2014 19 / 21

Performance

model runtime∗ states† |pending |† exp/state

german5 sf 189 15.8 4.9 3.48

german6 sf 4253 316.5 95.3 3.33

peterson6 wf 820 13.8 12.1 12.91

peterson7 wf 26957 380.3 340.5 14.19

snoop2 sf 160 2.6 1.3 12.71

saw20 sf 323 0.3 0.3 44.06

gbn3 2 sf 369 12.8 7.9 6.44

swp4 2 sf 503 18.6 11.7 6.58

intelsmall sf 285 0.5 0.3 6.36

intelmed sf 1,015 2.7 1.9 8.59

intelbig sf 13,872 51.8 29.9 11.92

∗runtime is in seconds; †state counts in millions

Blue: 40 processes running on 20 Core i7 machines (UBC)

Green: 16 processes running on Xeon machines (Intel)

Bingham/Greenstreet (UBC) Response property checking October 24/2014 20 / 21

Take-Away

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Result: An efficient implementation for response property verification,
applicable to very large state spaces

Our approach does well in practice – expands each state a small
number of times (modest overhead compared with safety ,)

(in the worst case, could expand each state O(mn2) times where m is
of fair rules and n number of states)

Optimizations improve the performance by more than a factor of 2 on
average

Our tool is massively scalable – can use on industrial problems

Thank-you! Questions?

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 / 21

Take-Away

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Result: An efficient implementation for response property verification,
applicable to very large state spaces

Our approach does well in practice – expands each state a small
number of times (modest overhead compared with safety ,)

(in the worst case, could expand each state O(mn2) times where m is
of fair rules and n number of states)

Optimizations improve the performance by more than a factor of 2 on
average

Our tool is massively scalable – can use on industrial problems

Thank-you! Questions?

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 / 21

Take-Away

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Result: An efficient implementation for response property verification,
applicable to very large state spaces

Our approach does well in practice – expands each state a small
number of times (modest overhead compared with safety ,)

(in the worst case, could expand each state O(mn2) times where m is
of fair rules and n number of states)

Optimizations improve the performance by more than a factor of 2 on
average

Our tool is massively scalable – can use on industrial problems

Thank-you!

Questions?

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 / 21

Take-Away

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Result: An efficient implementation for response property verification,
applicable to very large state spaces

Our approach does well in practice – expands each state a small
number of times (modest overhead compared with safety ,)

(in the worst case, could expand each state O(mn2) times where m is
of fair rules and n number of states)

Optimizations improve the performance by more than a factor of 2 on
average

Our tool is massively scalable – can use on industrial problems

Thank-you! Questions?

Bingham/Greenstreet (UBC) Response property checking October 24/2014 21 / 21

References I

U. Stern and D. L. Dill, Parallelizing the murphi verifier, International
Conference on Computer Aided Verification, 1997, pp. 256–278.

Bingham/Greenstreet (UBC) Response property checking October 24/2014 22 / 21

	Response and Fairness
	High Level Algorithm
	Our Implementation
	Distributed MC for Safety
	Adaptation for Response
	One Optimization (of many)

	Results
	Appendix

