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Motivation: Liveness + Explicit-State

High-Level Models: use Murϕ to describe a system

Liveness: nice to verify, but challenging in practice

Distributed Model Checking: memory and speed scalability

Explicit-State: easy to distribute/parallelize

(Also outperforms symbolic methods for certain models)

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking
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Response Properties

reachable

qinit p

“Will there always be a response?” ≡ “Does every fair path from
each reachable p-state lead to a q-state?”

p ≡ “request issued”; q ≡ “request granted”
In LTL: fair ⇒ 2(p → 3q)
Most common/simplest notion of liveness
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Response and Strongly Connected Components (SCCs)

reachable

qp

pending

SCC

SCC

init

pending ≡ “states where the request is outstanding”

The question fair ⇒ 2(p → 3q)? Is equivalent to asking “Is there a
fair SCC within pending?”

Terminology: fair SCC ≡ FSCC
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Fairness

In practice, we use fairness assumptions that reflect the underlying
implementation

Excludes unrealistic counterexamples

We use action-based fairness:

An action a is a set of system transitions
a is called strongly-fair (aka compassionate; a ∈ C) if
[a enabled ∞-often] ⇒ [a fires ∞-often]
a is called weakly-fair (aka just; a ∈ J ) if
[a presistently enabled] ⇒ [a fires]

Note: verifying fair ⇒ 2(p → 3q) with standard Büchi automata
LTL MC approach will blow up

i.e., property automata with size exponential in |C ∪ J |
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FSCCs

Both green actions and pink actions are strongly fair

pending ge

a b c

d

f h
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Algorithm Example

Both green actions and pink actions are strongly fair

Purple Blob ≡ MaybeFair

pending

h

ge

a b c

d

f

Idea: find unfair states by looking at previous actions within 〈MaybeFair〉
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Definition: Predecessor Actions (PAs)

Suppose H ⊆ pending . Let 〈H〉 be the subgraph of the transition
graph induced by H

The Predecessor Actions for state s ∈ H, are actions appearing on
some path that

1 is contained within 〈H〉; and
2 ends at s

Observe: If s lies on a FSCC in 〈H〉, then all enabled strongly-fair
actions at s are PAs

Contrapositive: If there ∃ a strongly-fair action enabled at s that
isn’t a PA, then s does NOT lie on a FSCC in 〈H〉

...and ∴ remove s from consideration!
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Distributed MC[SD97] Overview

Simple approach to distributing explicit-state model checking (for
safety)

Use uniform random hash function owner : States → PIDs
PID i only stores states s such that owner(s) = i .

Each PID maintains two data structures:

V: Set of (owned) states visited so far
WQ: List of states waiting to be expanded

Start: compute initial states and send to their owners

Iterate: state sucessors are sent to their respective owners

Termination: when each WQ is empty and no messages are in flight
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Message Flow

L
A

N
/N

oC
to
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state s

where owner(s) = i

WORKER PROCESS i

(visited states)

V : {s1, ..., sk}

V : {s1, ..., sk} ∪ {s}

((((((((((
if s ∈ V → discard s

if s /∈ V → add s to V

compute sucessors of s

s ′1, ..., s
′
r

s ′1, ..., s
′
r

owner(s ′1), ..., owner(s ′r )
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Hash Table Considerations

For safety: use a Murϕ hash table implementation that stores visited
states as 40-bit values

Chance of a missed state, but typically it’s a tiny chance (≈ 10−10)
Once a state is inserted, it can’t be recovered from its hash value

For response: necessary to track extra information about states, for
example

Is it a pending -state?
Is it in MaybeFair?
What are its predecessor actions, relative to 〈MaybeFair〉?

We use ≈ 16 + |C ∪ J | extra bits per state
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Tracking Predecessor Actions

Suppose C = {a1, ...ak}
“Tag” each hash table entry with PAs, which is a subset of C

(plus a few other bookkeeping bits)

For states in s ∈ MaybeFair : initialize PA(s) to ∅
Message Passing:

Expand state s: if (s, s ′) ∈ ai , send msg [s ′,PA(s) ∪ {ai}] to owner(s ′)
Receive msg [s ′, F ]: PA(s ′) := PA(s ′) ∪ F ; expand state s ′ if PA(s ′)
changed.
Continue until no further expansions.

(A similar idea works for weakly-fair actions)
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PA Propagation Example

c

d

b

e

PA: {a2, a7}

PA: {a2, a3, a5, a7}

a7 taken

a
4 taken

PA: {a1, a5}

a1
tak

en
PA: ∅

Strongly-fair actions C = {a1, ..., a7}

(once PAs reach a fixpoint, remove unfair states from MaybeFair ,
clear the PAs and compute them again)
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Optimization: The “Kernel”

Idea: save set of states K to disk so that MaybeFair can be generated
through reachability starting with K

Call K a kernel if MaybeFair ⊆ Reach(K )

i.e., MaybeFair is reachable starting from K

Note: both initial states I and p-states are kernels for all subsets of
pending

To maintain K :

Initialize K to p-states;
If s ∈ K is removed from MaybeFair , then

Remove s from K ;
Insert successors(s) ∩MaybeFair into K
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Kernel Optimization

p pending
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Performance

model runtime∗ states† |pending |† exp/state

german5 sf 189 15.8 4.9 3.48

german6 sf 4253 316.5 95.3 3.33

peterson6 wf 820 13.8 12.1 12.91

peterson7 wf 26957 380.3 340.5 14.19

snoop2 sf 160 2.6 1.3 12.71

saw20 sf 323 0.3 0.3 44.06

gbn3 2 sf 369 12.8 7.9 6.44

swp4 2 sf 503 18.6 11.7 6.58

intelsmall sf 285 0.5 0.3 6.36

intelmed sf 1,015 2.7 1.9 8.59

intelbig sf 13,872 51.8 29.9 11.92

∗runtime is in seconds; †state counts in millions

Blue: 40 processes running on 20 Core i7 machines (UBC)

Green: 16 processes running on Xeon machines (Intel)
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Take-Away

Our Goal: Attack a practical liveness property called response with
distributed, explicit-state model checking

Result: An efficient implementation for response property verification,
applicable to very large state spaces

Our approach does well in practice – expands each state a small
number of times (modest overhead compared with safety ,)

(in the worst case, could expand each state O(mn2) times where m is
# of fair rules and n number of states)

Optimizations improve the performance by more than a factor of 2 on
average

Our tool is massively scalable – can use on industrial problems

Thank-you! Questions?
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