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Proving Program Non-Termination

Given: program P
Goal: prove that P can have an infinite run for some input
→ (usually) a bug

Note:
if termination proof attempt fails, this alone means nothing

more sophisticated techniques might have proved termination . . .
. . . or the program actually is non-terminating

⇒ Need dedicated techniques to prove non-termination
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This Talk in a Nutshell

Goal: show that for some input there exists an infinite run of program P
compute (over-approximating) abstraction α(P) for P
show that for some input all runs of α(P) are infinite

⇒ non-termination of P

time

value

concrete infinite run of P = some abstract infinite run of α(P)

Not all abstractions α are ok, but many are.
new notion of Live Abstractions to prove non-termination
e.g. for non-linear arithmetic, heap-based data structures, . . .
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Closed

Recurrence Set [Gupta et al., POPL ’08]

set G of states: you can start in G, and then you can stay in G
program P with transition relation R, initial states I
G is

closed

recurrence set for P iff

(G has an initial state) ∃s.G(s) ∧ I(s)

(some transition can stay in G) ∀s ∃s′.G(s)→ R(s, s′) ∧ G(s′)

Theorem (Gupta, Henzinger, Majumdar, Rybalchenko, Xu,
POPL ’08)
Program P non-terminating iff P has a recurrence set G.

Automation
by under-approximation to “lassos” and constraint solving
restricted to deterministic programs on linear integer arithmetic
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Closed Recurrence Set [Chen et al., TACAS ’14]

set G of states: you can start in G, and then you must stay in G
program P with transition relation R, initial states I
G is closed recurrence set for P iff

(G has an initial state) ∃s.G(s) ∧ I(s)

(all transitions must stay in G) ∀s ∀s′.G(s) ∧ R(s, s′)→ G(s′)

(can make a transition from G) ∀s ∃s′.G(s)→ R(s, s′)

example

recurrence set G



Closed Recurrence Set [Chen et al., TACAS ’14]

set G of states: you can start in G, and then you must stay in G
program P with transition relation R, initial states I
G is closed recurrence set for P iff

(G has an initial state) ∃s.G(s) ∧ I(s)

(all transitions must stay in G) ∀s ∀s′.G(s) ∧ R(s, s′)→ G(s′)

(can make a transition from G) ∀s ∃s′.G(s)→ R(s, s′)

example

recurrence set G



Closed Recurrence Set [Chen et al., TACAS ’14]

set G of states: you can start in G, and then you must stay in G
program P with transition relation R, initial states I
G is closed recurrence set for P iff

(G has an initial state) ∃s.G(s) ∧ I(s)

(all transitions must stay in G) ∀s ∀s′.G(s) ∧ R(s, s′)→ G(s′)

(can make a transition from G) ∀s ∃s′.G(s)→ R(s, s′)

example

closed recurrence set G



Beyond Linear Arithmetic

Programs can use more complex operations or data
non-linear arithmetic

int x = z * z;

dynamic data structures on the heap
list = list->next;

Standard solution: over-approximating abstractions
→ fine for proving termination, but not for non-termination

Example (program and abstraction)

P : while (x > 0) {
x = x - z*z - 1;

}

⇒ terminating

α(P) : while (x > 0) {
x = nondet();

}

⇒ becomes non-terminating

Abstraction α(P) non-terminating 6⇒ P non-terminating
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(Toy) Example for Non-Linear Arithmetic
program P
assume(j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0) {

i = j*k;
j = j + 1;
k = k + 1;

}

(initial states: j ≥ 1 ∧ k ≥ 1,

(

transition relation:
i ≥ 0 ∧ i’= j ∗ k ∧
j’= j + 1 ∧ k’= k + 1)

has (closed) recurrence set
{(i = 1,j = 1,k = 1),

{

(i = 1,j = 2,k = 2),

{

(i = 4,j = 3,k = 3),

{

(i = 9,j = 4,k = 4),

{

. . . }

abstract program α(P)
assume(j ≥ 1 ∧ k ≥ 1);
while (i ≥ 0) {

i = j*k;
j = j + 1;
k = k + 1;

assume(i ≥ 1);
// linear invariant

}

has closed recurrence set
{(i,j,k) | i ≥ 1 ∧ j ≥ 1 ∧ k ≥ 1}
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Live Abstractions

α is a live abstraction from P = (R, I) to α(P) = (Rα, Iα) iff

s s′

a
(Simulation)

R

α

Theorem (Cook, Fuhs, Nimkar, O’Hearn, FMCAD ’14)
Let α a live abstraction, let Gα a closed recurrence set for α(P).
If there are a0, s0 with

s0

a0 ∈ Iα ∩ Gα

∈ I

α . . . then there is a closed recurrence set
G = {s | s a ∈ Gα}α for P

⇒ A closed recurrence set for α(P) also proves non-termination of P!
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Live Abstractions in the Wild

Non-Linear Arithmetic
find linear invariants (optional)
then replace non-linear expressions in assignments by nondet()
finally get linear arithmetic program

Heap-Based Programs
programs with data structures on the heap: linked lists, trees, etc.
abstraction to linear integer arithmetic program by THOR

[Magill, Tsai, Lee, Tsay, POPL ’10]
THOR’s abstraction is a live abstraction

. . .
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Automation and Implementation

Automation
like [Gupta et al., POPL ’08]
we only consider lassos
→ first under-approximate to

→

lasso L, then abstract to α(L)

→

in linear arithmetic
use linear arithmetic template for
closed recurrence set, find via
Farkas’ lemma + constraint solving
(solution⇒ values for template)
can also deal with nondet()

Implementation in prototype tool ANANT

extracts lasso from non-linear program
uses APRON to find (octagon) invariants
uses Z3 for constraint solving
for heap-based C programs: abstraction by THOR

Lasso-shaped programs
...
...
/* straight-line code */
while (... ∧ ...) {

...

...
/* straight-line code */

}
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Experiments

collected benchmark set of 29 non-linear and 4 heap-based
programs (literature, typical programming mistakes, . . .)
many tools only work on linear integer arithmetic programs
experimented with ANANT, APROVE, JULIA

timeout 600 s

Number of non-termination proofs found:

Non-linear Heap
ANANT 25 4

APROVE 0 2
JULIA 4 0

⇒ live abstractions open up more complex program domains for
non-termination proving



Future Work

lasso extraction in ANANT stand-alone
→ should be much more efficient in combination with a
termination prover
lift automation beyond lassos
identify further classes of live abstractions



Conclusion

new notion of live abstractions to disprove termination using
over-approximation + closed recurrence sets
allows to prove non-termination on complex data domains
→ non-linear arithmetic, heap, . . .
implementation in prototype tool ANANT

tool and benchmark set available at

http://www0.cs.ucl.ac.uk/staff/K.Nimkar/
live-abstraction

. . . is your abstraction a live abstraction?

http://www0.cs.ucl.ac.uk/staff/K.Nimkar/live-abstraction
http://www0.cs.ucl.ac.uk/staff/K.Nimkar/live-abstraction


Bonus Slide: Safety has the Same Issue, Right?

Analysis of safety (unreachability of “bad” states):
Check with symbolic execution if an abstract counterexample is legit

But: Counterexamples to termination are infinite . . .

1

. . . so their symbolic execution does not terminate

1http://xkcd.com/1433/

http://xkcd.com/1433/
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