Disproving Termination with Overapproximation

Byron Cook

<u>Carsten</u> <u>Fuhs</u>

Kaustubh Nimkar

Peter O'Hearn

University College London Microsoft Research

FMCAD 2014, Lausanne, Switzerland, 24 October 2014

Given: program *P* **Goal**: prove that *P* can have an **infinite run** for some input \rightarrow (usually) a bug

Note:

if termination proof attempt fails, this alone means nothing

- more sophisticated techniques might have proved termination
- ... or the program actually is non-terminating

 \Rightarrow Need dedicated techniques to prove non-termination

Given: program *P* **Goal**: prove that *P* can have an **infinite run** for some input \rightarrow (usually) a bug

Note:

if termination proof attempt fails, this alone means nothing

- more sophisticated techniques might have proved termination
- ... or the program actually is non-terminating

 \Rightarrow Need dedicated techniques to prove non-termination

This Talk in a Nutshell

Goal: show that for some input there exists an infinite run of program P

- compute (over-approximating) abstraction $\alpha(P)$ for P
- show that for some input **all** runs of $\alpha(P)$ are infinite
- \Rightarrow non-termination of *P*

concrete infinite run of P = some abstract infinite run of $\alpha(P)$

Not all abstractions α are ok, but many are.

- new notion of Live Abstractions to prove non-termination
- e.g. for non-linear arithmetic, heap-based data structures, ...

This Talk in a Nutshell

Goal: show that for some input there exists an infinite run of program P

- compute (over-approximating) abstraction $\alpha(P)$ for P
- show that for some input **all** runs of $\alpha(P)$ are infinite
- \Rightarrow non-termination of *P*

concrete infinite run of P = some abstract infinite run of $\alpha(P)$

Not all abstractions α are ok, but many are.

- new notion of Live Abstractions to prove non-termination
- e.g. for non-linear arithmetic, heap-based data structures, ...

This Talk in a Nutshell

Goal: show that for some input there exists an infinite run of program P

- compute (over-approximating) abstraction $\alpha(P)$ for P
- show that for some input **all** runs of $\alpha(P)$ are infinite
- \Rightarrow non-termination of P

concrete infinite run of P = some abstract infinite run of $\alpha(P)$

Not all abstractions α are ok, but many are.

- new notion of Live Abstractions to prove non-termination
- e.g. for non-linear arithmetic, heap-based data structures, ...

- Proving non-termination with abstractions
 - Live abstractions
 - 4 Automation and experiments
- 5 Future work and conclusion

Recurrence Set [Gupta et al., POPL '08]

- set \mathcal{G} of states: you can start in \mathcal{G} , and then you **can** stay in \mathcal{G}
- program P with transition relation R, initial states I
- G is recurrence set for P iff

(\mathcal{G} has an initial state) $\exists s. \mathcal{G}(s) \land I(s)$

(some transition **can** stay in \mathcal{G}) $\forall s \exists s' . \mathcal{G}(s) \rightarrow \mathcal{R}(s, s') \land \mathcal{G}(s')$

Theorem (Gupta, Henzinger, Majumdar, Rybalchenko, Xu, *POPL '08*)

Program P non-terminating iff P has a recurrence set G.

Automation

- by under-approximation to "lassos" and constraint solving
- restricted to deterministic programs on linear integer arithmetic

Recurrence Set [Gupta et al., POPL '08]

- set \mathcal{G} of states: you can start in \mathcal{G} , and then you **can** stay in \mathcal{G}
- program P with transition relation R, initial states I
- G is recurrence set for P iff

(\mathcal{G} has an initial state) $\exists s. \mathcal{G}(s) \land I(s)$

(some transition **can** stay in \mathcal{G}) $\forall s \exists s' . \mathcal{G}(s) \rightarrow \mathcal{R}(s, s') \land \mathcal{G}(s')$

Theorem (Gupta, Henzinger, Majumdar, Rybalchenko, Xu, *POPL '08*)

Program P non-terminating iff P has a recurrence set G.

Automation

- by under-approximation to "lassos" and constraint solving
- restricted to deterministic programs on linear integer arithmetic

Closed Recurrence Set [Chen et al., TACAS '14]

- set $\mathcal G$ of states: you can start in $\mathcal G$, and then you **must** stay in $\mathcal G$
- program P with transition relation R, initial states I
- G is closed recurrence set for P iff

(\mathcal{G} has an initial state) $\exists s. \mathcal{G}(s) \land I(s)$

(all transitions **must** stay in \mathcal{G}) $\forall s \forall s' . \mathcal{G}(s) \land R(s, s') \rightarrow \mathcal{G}(s')$

(can make a transition from \mathcal{G}) $\forall s \exists s'. \mathcal{G}(s) \rightarrow R(s, s')$

example

Closed Recurrence Set [Chen et al., TACAS '14]

- set $\mathcal G$ of states: you can start in $\mathcal G$, and then you **must** stay in $\mathcal G$
- program P with transition relation R, initial states I
- G is closed recurrence set for P iff

(\mathcal{G} has an initial state) $\exists s. \mathcal{G}(s) \land I(s)$

(all transitions **must** stay in \mathcal{G}) $\forall s \forall s' . \mathcal{G}(s) \land R(s, s') \rightarrow \mathcal{G}(s')$

(can make a transition from \mathcal{G}) $\forall s \exists s'. \mathcal{G}(s) \rightarrow R(s, s')$

• example

recurrence set \mathcal{G}

Closed Recurrence Set [Chen et al., TACAS '14]

- set $\mathcal G$ of states: you can start in $\mathcal G$, and then you **must** stay in $\mathcal G$
- program P with transition relation R, initial states I
- G is closed recurrence set for P iff

(\mathcal{G} has an initial state) $\exists s. \mathcal{G}(s) \land I(s)$

(all transitions **must** stay in \mathcal{G}) $\forall s \forall s' . \mathcal{G}(s) \land R(s, s') \rightarrow \mathcal{G}(s')$

(can make a transition from \mathcal{G}) $\forall s \exists s'. \mathcal{G}(s) \rightarrow R(s, s')$

example

closed recurrence set \mathcal{G}

Programs can use more complex operations or data

non-linear arithmetic

int x = z * z;

• dynamic data structures on the heap

list = list->next;

Standard solution: over-approximating abstractions

 \rightarrow fine for proving termination, but not for non-termination

Example (program and abstraction)

```
P: while (x > 0) {
```

```
\mathbf{x} = \mathbf{x} - \mathbf{z} \mathbf{*} \mathbf{z} - \mathbf{1};
```

```
α(P): while (x > 0) {
    x = nondet();
  }
```

 \Rightarrow terminating

 \Rightarrow becomes **non-terminating**

Abstraction $\alpha(P)$ non-terminating eq P non-terminating

Programs can use more complex operations or data

non-linear arithmetic

int x = z * z;

• dynamic data structures on the heap

list = list->next;

Standard solution: over-approximating abstractions

 \rightarrow fine for proving termination, but not for non-termination

```
Example (program and abstraction)
```

```
P: while (x > 0) {
```

```
\mathbf{x} = \mathbf{x} - \mathbf{z} \mathbf{z} - \mathbf{1};
```

```
\alpha(P): while (x > 0) {
x = nondet();
```

```
\Rightarrow terminating
```

```
\Rightarrow becomes non-terminating
```

Abstraction $\alpha(P)$ non-terminating $\Rightarrow P$ non-terminating

program P assume(j ≥ 1 ∧ k ≥ 1); while (i ≥ 0) { i = j*k; j = j + 1; k = k + 1; }

program P

assume(j
$$\geq$$
 1 \wedge k \geq 1);
while (i \geq 0) {
 i = j*k;
 j = j + 1;
 k = k + 1;
}

(initial states: $j \ge 1 \land k \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} \ast \mathbf{k} \land$$
$$\mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1})$$

program P

assume(j \geq 1 \wedge k \geq 1); while (i \geq 0) { i = j*k; j = j + 1; k = k + 1; }

(initial states: $j \ge 1 \land k \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} * \mathbf{k} \land$$

 $\mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1}$

has (closed) recurrence set

$$\{ (\mathbf{i} = 1, \mathbf{j} = 1, \mathbf{k} = 1), \\ (\mathbf{i} = 1, \mathbf{j} = 2, \mathbf{k} = 2), \\ (\mathbf{i} = 4, \mathbf{j} = 3, \mathbf{k} = 3), \\ (\mathbf{i} = 9, \mathbf{j} = 4, \mathbf{k} = 4), \dots \}$$

program P assume(j ≥ 1 ∧ k ≥ 1); while (i ≥ 0) { i = j*k; j = j + 1; k = k + 1; }

(initial states: $j \ge 1 \land k \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} * \mathbf{k} \land$$
 $\mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1}$

has (closed) recurrence set {(i = 1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 4, j = 3, k = 3),

 $(i = 9, j = 4, k = 4), \dots$

abstract program $\alpha(P)$ assume (j \geq 1 \wedge k \geq 1); while (i \geq 0) { i = j*k; j = j + 1; k = k + 1;

program P

assume (j
$$\geq$$
 1 \wedge k \geq 1);
while (i \geq 0) {
 i = j*k;
 j = j + 1;
 k = k + 1;
}

(initial states: $\mathbf{j} \ge 1 \land \mathbf{k} \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} \ast \mathbf{k} \land \\ \mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1})$$

has (closed) recurrence set {(i = 1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 1, j = 2, k = 2),

(i = 4, j = 3, k = 3), $(i = 9, j = 4, k = 4), \dots \}$ abstract program $\alpha(P)$ assume (j \geq 1 \wedge k \geq 1); while (i \geq 0) { i = j*k; j = j + 1; k = k + 1; assume (i \geq 1); // linear invariant

program P assume(j ≥ 1 ∧ k ≥ 1); while (i ≥ 0) { i = j*k; j = j + 1; k = k + 1; }

(initial states: $\mathbf{j} \ge 1 \land \mathbf{k} \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} \ast \mathbf{k} \land \\ \mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1})$$

has (closed) recurrence set {(i = 1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 4, j = 3, k = 3)

(i = 4, j = 3, k = 3), $(i = 9, j = 4, k = 4), \dots \}$ abstract program $\alpha(P)$ assume (j \geq 1 \wedge k \geq 1); while (i \geq 0) { i = nondet (); j = j + 1; k = k + 1; assume (i \geq 1); // linear invariant

program P assume(j ≥ 1 ∧ k ≥ 1); while (i ≥ 0) { i = j*k; j = j + 1; k = k + 1; }

(initial states: $\mathbf{j} \ge 1 \land \mathbf{k} \ge 1$, transition relation:

$$\mathbf{i} \ge \mathbf{0} \land \mathbf{i'} = \mathbf{j} \ast \mathbf{k} \land \\ \mathbf{j'} = \mathbf{j} + \mathbf{1} \land \mathbf{k'} = \mathbf{k} + \mathbf{1})$$

has (closed) recurrence set {(i = 1, j = 1, k = 1), (i = 1, j = 2, k = 2), (i = 4, j = 3, k = 3), (i = 9, j = 4, k = 4), ...} abstract program $\alpha(P)$ assume (j \geq 1 \wedge k \geq 1); while (i \geq 0) { i = nondet(); j = j + 1; k = k + 1; assume (i \geq 1); // linear invariant }

 $\begin{aligned} &\text{has closed recurrence set} \\ &\{ (\texttt{i},\texttt{j},\texttt{k}) \mid \texttt{i} \geq 1 \land \texttt{j} \geq 1 \land \texttt{k} \geq 1 \} \end{aligned}$

 α is a live abstraction from P = (R, I) to $\alpha(P) = (R^{\alpha}, I^{\alpha})$ iff

Theorem (Cook, Fuhs, Nimkar, O'Hearn, FMCAD '14)

Let α a live abstraction, let \mathcal{G}^{α} a closed recurrence set for $\alpha(P)$. If there are a_0 , s_0 with

 $a_{0} \in I^{\alpha} \cap \mathcal{G}^{\alpha}$ $\alpha \uparrow \qquad \dots \text{ then there is a closed recurrence set}$ $s_{0} \in I \qquad \qquad \mathcal{G} = \{s \mid s - \stackrel{\alpha}{--} \Rightarrow a \in \mathcal{G}^{\alpha}\} \text{ for } P$

 \Rightarrow A closed recurrence set for $\alpha(P)$ also proves non-termination of P!

Non-Linear Arithmetic

- find linear invariants (optional)
- then replace non-linear expressions in assignments by nondet ()
- finally get linear arithmetic program

Heap-Based Programs

- programs with data structures on the heap: linked lists, trees, etc.
- abstraction to linear integer arithmetic program by THOR [Magill, Tsai, Lee, Tsay, *POPL '10*]
- THOR's abstraction is a live abstraction

Non-Linear Arithmetic

- find linear invariants (optional)
- then replace non-linear expressions in assignments by nondet ()
- finally get linear arithmetic program

Heap-Based Programs

- programs with data structures on the heap: linked lists, trees, etc.
- abstraction to linear integer arithmetic program by THOR [Magill, Tsai, Lee, Tsay, POPL '10]
- THOR's abstraction is a live abstraction

Automation and Implementation

Automation

 like [Gupta *et al.*, *POPL '08*] we only consider lassos
 → first under-approximate to

lasso *L*, then abstract to $\alpha(L)$ in linear arithmetic

- use linear arithmetic template for closed recurrence set, find via Farkas' lemma + constraint solving (solution ⇒ values for template)
- can also deal with nondet ()

Implementation in prototype tool ANANT

- extracts lasso from non-linear program
- uses APRON to find (octagon) invariants
- uses Z3 for constraint solving
- for heap-based C programs: abstraction by THOR

Lasso-shaped programs

/* straight-line code */ while $(\ldots \land \ldots)$ { /* straight-line code */

Automation and Implementation

Automation

 like [Gupta *et al.*, *POPL '08*] we only consider lassos
 → first under-approximate to

lasso *L*, then abstract to $\alpha(L)$ in linear arithmetic

- use linear arithmetic template for closed recurrence set, find via Farkas' lemma + constraint solving (solution ⇒ values for template)
- can also deal with nondet ()

Implementation in prototype tool ANANT

- extracts lasso from non-linear program
- uses APRON to find (octagon) invariants
- uses Z3 for constraint solving
- for heap-based C programs: abstraction by THOR

Lasso-shaped programs

```
...
/* straight-line code */
while (... ^ ...) {
    ...
    ...
    /* straight-line code */
}
```

- collected benchmark set of 29 non-linear and 4 heap-based programs (literature, typical programming mistakes, ...)
- many tools only work on linear integer arithmetic programs
- experimented with ANANT, APROVE, JULIA
- timeout 600 s

Number of non-termination proofs found:

	Non-linear	Heap
Anant	25	4
APROVE	0	2
JULIA	4	0

 \Rightarrow live abstractions open up more complex program domains for non-termination proving

- Iasso extraction in ANANT stand-alone
 → should be much more efficient in combination with a
 termination prover
- lift automation beyond lassos
- identify further classes of live abstractions

- new notion of live abstractions to disprove termination using over-approximation + closed recurrence sets
- allows to prove non-termination on complex data domains
 → non-linear arithmetic, heap, ...
- implementation in prototype tool ANANT
- tool and benchmark set available at

```
http://www0.cs.ucl.ac.uk/staff/K.Nimkar/
live-abstraction
```

... is your abstraction a live abstraction?

Bonus Slide: Safety has the Same Issue, Right?

Analysis of safety (unreachability of "bad" states): Check with **symbolic execution** if an abstract counterexample is legit

But: Counterexamples to termination are infinite

... so their symbolic execution **does not terminate**

¹http://xkcd.com/1433/