# Leveraging Linear and Mixed Integer Programming for SMT 

Tim King ${ }^{1}$ Clark Barrett ${ }^{1}$ Cesare Tinelli ${ }^{2}$
${ }^{1}$ New York University
${ }^{2}$ The University of Iowa
October 23, 2014

## APPROACH

- Floating point LP/MIP solver within SMT to:

1. Reseed the Simplex solver
2. Replay an MIP proof

## APPROACH

- Floating point LP/MIP solver within SMT to:

1. Reseed the Simplex solver
2. Replay an MIP proof

- Philosophy
- Solve hard/unsolved problems
- Augment SMT solver
- Minimize changes in search by external solver


# Table of Contents 

Simplex Background

## Reseeding Simplex

## Replaying MIP Proofs

## Empirical Results

Conclusion

# Decision Procedure for QF_LRA 

Quantifier Free Linear Real Arithmetic

Is there a satisfying assignment, $a: \mathcal{X} \rightarrow \mathbb{R}$, that makes,

$$
\begin{gathered}
x+y \geq 1 \\
x-y \geq 0 \\
4 x-y \leq 2
\end{gathered}
$$

evaluate to true?

## Decision Procedure for QF_LRA

## Quantifier Free Linear Real Arithmetic

Is there a satisfying assignment, $a: \mathcal{X} \rightarrow \mathbb{R}$, that makes,

$$
\begin{gathered}
x+y \geq 1 \\
x-y \geq 0 \\
4 x-y \leq 2
\end{gathered}
$$

evaluate to true?

$$
\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

## Visually



$$
\begin{gathered}
x+y \geq 1 \\
x-y \geq 0 \\
4 x-y \leq 2
\end{gathered}
$$

$$
\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

## Preprocessing

- Introduce a fresh $s_{i}$ for each $\sum T_{i, j} \cdot x_{j}$
- Literals are of the form:

$$
\bigwedge\left(s_{i}=\sum_{x_{j}} T_{i, j} \cdot x_{j}\right) \wedge \bigwedge l_{i} \leq x_{i} \leq u_{i}
$$

and $s_{i}$ appears in exactly 1 equality.

- Collect into: $T \mathcal{X}=0$ and $l \leq \mathcal{X} \leq u$


## Basic, Nonbasic, \& Tableau

- Every row in $T$ is solved for a variable $x_{i}$

$$
x_{i}=\sum_{x_{j} \in \mathcal{N}} T_{i, j} x_{j}
$$

- Not solved for variables are nonbasic $\left(x_{j} \in \mathcal{N}\right)$
- Set of solved for variables are basic $\left(x_{i} \in \mathcal{B}\right)$


## Updating Nonbasic Variables

Changing the assignment to $j \in \mathcal{N}$ is easy
procedure $\operatorname{UPDATE}(j, \delta)$

$$
a_{j} \leftarrow a_{j}+\delta
$$

for all basic $x_{i}$ do

$$
a_{i} \leftarrow a_{i}+T_{i, j} \cdot \delta
$$

## Updating Nonbasic Variables

Changing the assignment to $j \in \mathcal{N}$ is easy
procedure $\operatorname{UPDATE}(j, \delta)$

$$
a_{j} \leftarrow a_{j}+\delta
$$

for all basic $x_{i}$ do

$$
a_{i} \leftarrow a_{i}+T_{i, j} \cdot \delta
$$

## Add the Invariant

The nonbasic variables satisfy their bounds.

## $\operatorname{Pivot}(i, j)$

Move Variables In / Out of $\mathcal{B}$

## Preconditions

Given $x_{i}$ basic, $x_{j}$ nonbasic, and $T_{i, j} \neq 0$, $\operatorname{Pivot}(i, j)$ makes $x_{i}$ nonbasic and $x_{j}$ basic.

## $\operatorname{Pivot}(i, j)$

Move Variables In / Out of $\mathcal{B}$

## Preconditions

Given $x_{i}$ basic, $x_{j}$ nonbasic, and $T_{i, j} \neq 0$, $\operatorname{PIVOT}(i, j)$ makes $x_{i}$ nonbasic and $x_{j}$ basic.

- Take $x_{i}$ 's row

$$
x_{i}=T_{i, j} x_{j}+\sum T_{i, k} x_{k}
$$

- Solve for $x_{j}$

$$
x_{j}=\frac{1}{T_{i, j}} x_{i}+\sum-\frac{T_{i, k}}{T_{i, j}} x_{k}
$$

- Replace $x_{j}$ everywhere else in $T$


## Tableau Example

$$
\begin{gathered}
x+y \geq 1 \\
x-y \geq 0 \\
4 x-y \leq 2
\end{gathered}
$$

## Tableau Example

$$
\begin{gathered}
T \mathcal{X}=0 \quad \text { is equivalent to } \quad \begin{aligned}
& s_{1}=x+y \\
& s_{2}=x-y \\
& s_{3}=4 x+y
\end{aligned} \\
s_{1} \geq 1 \wedge s_{2} \geq 0 \wedge s_{3} \leq 2 \\
\mathcal{B}=\left\{s_{1}, s_{2}, s_{3}\right\}, \mathcal{N}=\{x, y\}
\end{gathered}
$$

## Simplex for DPLL(T)[DdM06]

while $\neg(l \leq a \leq u)$ do

```
for all i\in\mathcal{B}\mathrm{ , row }i\mathrm{ is }\mp@subsup{x}{i}{}=\sum\mp@subsup{T}{i,f}{}\mp@subsup{x}{j}{}
if }\existsi\in\mathcal{B}\mathrm{ s.t. }\mp@subsup{a}{i}{}>\mp@subsup{u}{i}{}\mathrm{ , and }\sum\mp@subsup{T}{i,j}{}\mp@subsup{x}{j}{}\mathrm{ is minimized then
    return a row conflict from row i
else
    select some basic }\mp@subsup{x}{i}{}\mathrm{ s.t. }\mp@subsup{a}{i}{}>\mp@subsup{u}{i}{
    select }\mp@subsup{x}{j}{}\mathrm{ from }\sum\mp@subsup{T}{i,j}{}\cdot\mp@subsup{x}{j}{
    Update the assignment of }\mp@subsup{x}{j}{}\mathrm{ s.t. }\mp@subsup{a}{i}{}\leftarrow\mp@subsup{u}{i}{
    Pivot(i,j) \trianglerightO(|T|)
```

Ignoring $a_{i}<l_{i}$ cases

## Row Conflicts

- Suppose $\forall T_{i, j}>0 . a_{j}=l_{j}$ and $\forall T_{i, j}<0 . a_{j}=u_{j}$.
- Then $\quad \sum T_{i, j} x_{j} \geq \sum T_{i, j} a_{j} \quad$ (or minimized)


## Row Conflicts

- Suppose $\forall T_{i, j}>0 . a_{j}=l_{j}$ and $\forall T_{i, j}<0 . a_{j}=u_{j}$.
- Then $x_{i}=\sum T_{i, j} x_{j} \geq \sum T_{i, j} a_{j}=a_{i}$ (or minimized)


## Row Conflicts

- Suppose $\forall T_{i, j}>0 . a_{j}=l_{j}$ and $\forall T_{i, j}<0 . a_{j}=u_{j}$.
- Then $x_{i}=\sum T_{i, j} x_{j} \geq \sum T_{i, j} a_{j}=a_{i}$ (or minimized)
- $a_{i}>u_{i} \geq x_{i} \geq a_{i} \models$ false


## Simplex for $\operatorname{DPLL}(\mathcal{T})$

## Observations

- Simplex searches for $a^{\prime}$ s that are against bounds
- Pivoting is expensive
- Most checks need few pivots [KBD13]


## Sum-of-Infeasibilities Simplex [KBD13]



# Table of Contents 

Simplex Background<br>Reseeding Simplex<br>Replaying MIP Proofs<br>Empirical Results

Conclusion

## Leveraging LP

- SOISimplex added optimization to Simplex for DPLL(T)
- Linear Programming solvers perform both
- feasibility checking and
- optimization


## Leveraging LP

- SOISimplex added optimization to Simplex for DPLL(T)
- Linear Programming solvers perform both
- feasibility checking and
- optimization
- Decades of research: fast by SMT standards


## Leveraging LP

- SOISimplex added optimization to Simplex for DPLL(T)
- Linear Programming solvers perform both
- feasibility checking and
- optimization
- Decades of research: fast by SMT standards
- Tend to use floating point (FP)
- Both Sat/Unsat answers are unsound


## Can SMT leverage LP?

- Trusting LP solver [YM06]
- Check each $\mathcal{T}$-conflict used [FNORC08]
- ForcedPivot procedure [CBdOM12, Mon09]


## CAN SMT LEVERAGE LP?

- Trusting LP solver [YM06]
- Check each $\mathcal{T}$-conflict used [FNORC08]
- ForcedPivot procedure [CBdOM12, Mon09]
- All use LP solver as main QF_LRA solver


## Our Approach

- Call an external off-the-shelf untrusted Simplex LP solver
- Reseed the state of the exact precision solver
- Only when it is likely to help
- Implemented with GLPK


## Reseeding the Simplex State

When $\mathbb{R}$-RELAXATION IS HARD

1. Construct a FP problem from exact

$$
T \mathcal{X}=0, l \leq \mathcal{X} \leq u \quad \Longrightarrow \quad \widetilde{T} \mathcal{X}=0, \tilde{l} \leq \mathcal{X} \leq \widetilde{u}
$$

2. Call untrusted LP Simplex solver on $\widetilde{T}, \tilde{l}, \widetilde{u}$
3. Get back FP $\widetilde{a}$ and $\widetilde{\mathcal{B}}$
4. Convert $(\tilde{a}: \mathcal{X} \rightarrow \mathbb{F})$ into ( $a^{\text {massage }}: \mathcal{X} \rightarrow \mathbb{Q}$ )
5. RESEED $\left(a^{\text {massage }}, \widetilde{\mathcal{B}}\right)$ to get a new $a$ and $T$
6. Call SMT's trusted $\mathbb{Q}$ Simplex solver

## CONCERNS WHEN IMPORTING $\widetilde{a}$

$$
y=-\frac{2}{3} x+\frac{1}{3} s \quad s \geq 1 \quad\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{s}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Suppose $a_{y}=\frac{1}{3}-\epsilon$. Then $a_{s}<1$.

## CONCERNS WHEN IMPORTING $\widetilde{a}$

$$
y=-\frac{2}{3} x+\frac{1}{3} s \quad s \geq 1 \quad\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{s}
\end{array}\right]=\left[\begin{array}{c}
0 \\
\frac{1}{3} \\
1
\end{array}\right]
$$

Suppose $a_{y}=\frac{1}{3}-\epsilon$. Then $a_{s}<1$.

- Fix it with Simplex?
- Flipping coins on tightly satisfied inequalities
- Simplex generates tight solutions


## MASSAGING AssignMENTS

Floats to Rationals

$$
\begin{aligned}
& r \leftarrow \text { DIOAPPROX }\left(\widetilde{a}_{i}, D\right) \\
& \text { if }\left|r-a_{i}\right| \leq \epsilon \text { then } r \leftarrow a_{i} \\
& \text { if } x \in \mathcal{X}_{\mathbb{Z}} \text { and } \mid r-\lfloor r| | \leq \epsilon \text { then } r \leftarrow\lfloor r\rceil \\
& \text { if } r>u_{i} \text { or }\left|r-u_{i}\right| \leq \epsilon \text { then } r \leftarrow u_{i} \\
& \text { else if } r<l_{i} \text { or }\left|r-l_{i}\right| \leq \epsilon \text { then } r \leftarrow l_{i} \\
& a_{i}^{\text {massage }} \leftarrow r
\end{aligned}
$$

$$
\text { Magic } D=2^{28}
$$

## MASSAGING AssignMENTS

Floats to Rationals
$r \leftarrow \operatorname{DIOAPpROX}\left(\tilde{a}_{i}, D\right)$
if $\left|r-a_{i}\right|$ See paper for details
if $x \in \mathcal{X}_{\mathbb{Z}}$ and $|r-\lfloor r\rceil| \leq \epsilon$ then $r \leftarrow\lfloor r\rceil$
if $r>u_{i}$ or $\left|r-u_{i}\right| \leq \epsilon$ then $r \leftarrow u_{i}$
else if $r<l_{i}$ or $\left|r-l_{i}\right| \leq \epsilon$ then $r \leftarrow l_{i}$
$a_{i}^{\text {massage }} \leftarrow r$

Magic $D=2^{28}$

RESEEDING SIMPLEX $\left(a^{\text {massage }}, \widetilde{\mathcal{B}}\right)$
for all $j \in \mathcal{N}$ do UPDATE $x_{j}$ s.t. $a_{j} \leftarrow a_{j}^{\text {massage }}$
repeat
if any row conflict then return Unsat if $l \leq a \leq u$ then return Sat select $i, k$ s.t. $k \in \widetilde{\mathcal{B}}, i \notin \widetilde{\mathcal{B}}, T_{i, k} \neq 0$, and $a_{i}>u_{i}(\ldots)$
if found $x_{i}$ and $x_{k}$ then
$\operatorname{Pivot}(i, k)$ and $\operatorname{Update}(i, \cdot)$ s.t. $a_{i} \leftarrow a_{i}^{\text {massage }}$
else
return Unknown $\triangleright \widetilde{\mathcal{B}}$ is not valid basis
until $\mathcal{N} \cap \widetilde{\mathcal{B}}=\varnothing$
return Unknown $\triangleright$ Call SMT's simplex solver

# RESEEDING SIMPLEX $\left(a^{\text {massage }}, \widetilde{\mathcal{B}}\right)$ : ABSTRACT 

Pull in $a^{\text {massage }}$ on $\mathcal{N}$
repeat
One Simplex for $\operatorname{DPLL}(\mathcal{T})$ round
Select leaving $x_{i}$ from $\neg \widetilde{\mathcal{B}}$
Select entering $x_{j}$ from $\mathcal{N} \cap \widetilde{\mathcal{B}}$
until $\mathcal{N} \cap \widetilde{\mathcal{B}}=\varnothing$ or fail
Call SMT's simplex solver

# RESEEDING SIMPLEX $\left(a^{\text {massage }}, \widetilde{\mathcal{B}}\right)$ : ABSTRACT 

Pull in $a^{\text {massage }}$ on $\mathcal{N}$
repeat
One Simplex for $\operatorname{DPLL}(\mathcal{T})$ round
Select leaving $x_{i}$ from $\neg \widetilde{\mathcal{B}}$
Select entering $x_{j}$ from $\mathcal{N} \cap \widetilde{\mathcal{B}}$
until $\mathcal{N} \cap \widetilde{\mathcal{B}}=\varnothing$ or fail
Call SMT's simplex solver

# RESEEDING SIMPLEX $\left(a^{\text {massage }}, \widetilde{\mathcal{B}}\right)$ : ABSTRACT 

Pull in $a^{\text {massage }}$ on $\mathcal{N}$
repeat
One Simplex for $\operatorname{DPLL}(\mathcal{T})$ round
Select leaving $x_{i}$ from $\neg \widetilde{\mathcal{B}}$
Select entering $x_{j}$ from $\mathcal{N} \cap \widetilde{\mathcal{B}}$
until $\mathcal{N} \cap \widetilde{\mathcal{B}}=\varnothing$ or fail
Call SMT's simplex solver

# Table of Contents 

## Simplex Background <br> Reseeding Simplex

Replaying MIP Proofs

Empirical Results

Conclusion

# $\operatorname{Move}\left\langle Q F \_L R A+L P\right\rangle \rightarrow\left\langle Q F \_L I R A+M I P\right\rangle$ 

- Partition variables $\mathcal{X}$ into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$


# $\operatorname{Move}\left\langle Q F \_L R A+L P\right\rangle \rightarrow\left\langle Q F \_L I R A+M I P\right\rangle$ 

- Partition variables $\mathcal{X}$ into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$
- $\mathbb{R}$-relaxation treat all $\mathcal{X}$ as $\mathcal{X}_{\mathbb{R}}$
- $a$ is $\mathbb{Z}$-compatible if $\forall x_{i} \in \mathcal{X}_{\mathbb{Z}}$, then $a_{i} \in \mathbb{Z}$


# $\operatorname{MoVE}\left\langle Q F \_L R A+L P\right\rangle \rightarrow\left\langle Q F \_L I R A+M I P\right\rangle$ 

- Partition variables $\mathcal{X}$ into $\mathcal{X}_{\mathbb{R}} \cup \mathcal{X}_{\mathbb{Z}}$
- $\mathbb{R}$-relaxation treat all $\mathcal{X}$ as $\mathcal{X}_{\mathbb{R}}$
- $a$ is $\mathbb{Z}$-compatible if $\forall x_{i} \in \mathcal{X}_{\mathbb{Z}}$, then $a_{i} \in \mathbb{Z}$
- MIP is new for $\operatorname{DPLL}(\mathcal{T})$


## Returning to the Example



$$
\begin{aligned}
& \begin{array}{c}
x+y \geq 1 \\
x-y \geq 0 \\
4 x-y \leq 2
\end{array} \\
& {\left[\begin{array}{l}
a_{x} \\
a_{y}
\end{array}\right]=\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]} \\
& \mathbb{R} \text {-feasible } \\
& \text { not } \\
& \mathbb{Z} \text {-compatible }
\end{aligned}
$$

# Branches and Cuts 

Refining $\mathbb{Z}$-INFEASIbLE ASSIGNMENTS

- Branch:

$$
\frac{x_{i} \in \mathcal{X}_{\mathbb{Z}} \quad \alpha \in \mathbb{R}}{x_{i} \leq\lfloor\alpha\rfloor \vee x_{i} \geq\lceil\alpha\rceil}
$$

- Cut: $\sum c_{i} x_{j} \geq d$ such that
- $\left\{l_{i}\right\} \models_{\mathbb{R} \mathbb{Z}} \sum c_{j} x_{j} \geq d$
- $\left\{l_{i}\right\} \not \models_{\mathbb{R}} \sum c_{j} x_{j} \geq d$
- $\left\{x_{j}=a_{j}\right\} \not \vDash \sum c_{j} x_{j} \geq d\left(^{*}\right)$


## Branches and Cuts

Visually

Branch: $y \geq 1 \vee y \leq 0$


Cut: $\{\cdots\} \not \models_{\mathbb{R} \mathbb{Z}} x \geq 1$


# BRANCH-AND-CUT SOLVERS 

Most SMT solvers and many MIP solvers

1. Treat all of $\mathcal{X}$ as if they were $\mathcal{X}_{\mathbb{R}}$
2. Solve this $\mathbb{R}$-relaxation
3. If $\mathbb{R}$-infeasible, return $\mathbb{R}$-conflict[s]
4. If $\mathbb{R}$-relaxation is (Sat $a$ ) and $a$ is $\mathbb{Z}$-compatible, return $a$
5. Try to derive the cut $\sum c_{j} x_{j} \geq d$
6. If successful, add the cut and goto (1)
7. Branch on some $x_{i} \in \mathcal{X}_{\mathbb{Z}}$ with $a_{i} \notin \mathbb{Z}$

# BRANCH-AND-CUT SOLVERS 

Most SMT solvers and many MIP solvers

1. Treat all of $\mathcal{X}$ as if they were $\mathcal{X}_{\mathbb{R}}$
2. Solve this $\mathbb{R}$-relaxation
3. If $\mathbb{R}$-infeasible, return $\mathbb{R}$-conflict[s]
4. If $\mathbb{R}$-relaxation is (Sat $a$ ) and $a$ is $\mathbb{Z}$-compatible, return $a$
5. Try to derive the cut $\sum c_{j} x_{j} \geq d$
6. If successful, add the cut and goto (1)
7. Branch on some $x_{i} \in \mathcal{X}_{\mathbb{Z}}$ with $a_{i} \notin \mathbb{Z}$

Heuristically limit cuts

# BRANCH-AND-CUT SOLVERS 

Most SMT solvers and many MIP solvers

1. Treat all of $\mathcal{X}$ as if they were $\mathcal{X}_{\mathbb{R}}$
2. Solve this $\mathbb{R}$-relaxation
3. If $\mathbb{R}$-infeasible, return $\mathbb{R}$-conflict[s]
4. If $\mathbb{R}$-relaxation is (Sat $a$ ) and $a$ is $\mathbb{Z}$-compatible, return $a$
5. Try to derive the cut $\sum c_{j} x_{j} \geq d$
6. If successful, add the cut and goto (1)
7. Branch on some $x_{i} \in \mathcal{X}_{\mathbb{Z}}$ with $a_{i} \notin \mathbb{Z}$

Heuristically limit cuts Only at leaves in $\operatorname{DPLL}(\mathcal{T})$

# Possible answers from MIP? 

1. $\mathbb{R}$-infeasible
2. $\mathbb{R}$-feasible and $\mathbb{Z}$-feasible
3. $\mathbb{R}$-feasible and $\mathbb{Z}$-infeasible
4. Failure Cases

## Possible answers from MIP?

1. $\mathbb{R}$-infeasible
2. $\mathbb{R}$-feasible and $\mathbb{Z}$-feasible
3. $\mathbb{R}$-feasible and $\mathbb{Z}$-infeasible
4. Failure Cases

Just Reseed like $\mathbb{R}$-feasible
If $a$ is $\mathbb{Z}$-compatible $\Longrightarrow$ done!

## Possible answers from MIP?

1. $\mathbb{R}$-infeasible
2. $\mathbb{R}$-feasible and $\mathbb{Z}$-feasible
3. $\mathbb{R}$-feasible and $\mathbb{Z}$-infeasible
4. Failure Cases

Can we leverage MIP's reasoning?

## Infeasible Branch-and-Cut Executions

Proof Trees

- Leaves are $\mathbb{R}$-infeasible

- Internal nodes are branches

$$
x_{i} \leq\lfloor\alpha\rfloor \vee x_{i} \geq\lceil\alpha\rceil \quad \text { if } x_{i} \in \mathcal{X}_{\mathbb{Z}}
$$

- Nodes have cuts

$$
\left\{l_{i}\right\} \models_{\mathbb{R} \mathbb{Z}} \sum c_{j} x_{j} \geq d
$$

## Infeasible Branch-and-Cut Executions

Proof Trees

- Leaves are $\mathbb{R}$-infeasible

- Internal nodes are branches

$$
x_{i} \leq\lfloor\alpha\rfloor \vee x_{i} \geq\lceil\alpha\rceil \quad \text { if } x_{i} \in \mathcal{X}_{\mathbb{Z}}
$$

- Nodes have cuts

$$
\left\{l_{i}\right\} \models_{\mathbb{R} \mathbb{Z}} \sum c_{j} x_{j} \geq d
$$

Resolution to remove branches

## Replaying the MIP Execution

- Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- Repeat "the big steps" in the SMT solver


## Replaying the MIP Execution

- Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- Repeat "the big steps" in the SMT solver
- Reconstruct the Resolution+Cutting Planes proof


## Replaying the MIP Execution

- Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- Repeat "the big steps" in the SMT solver
- Reconstruct the Resolution+Cutting Planes proof
- Success is a conflict


## Replaying the MIP Execution

- Instrument GLPK to print hints about: branch, unsat leaves, and derivations of cutting planes
- Repeat "the big steps" in the SMT solver
- Reconstruct the Resolution+Cutting Planes proof
- Success is a conflict
- Any failure can be safely dropped


## Cutting Planes

- Instantiate a cutting plane procedure from a hint
- Derivation must tightly match to get the "same" cut
- White-box knowledge and detailed hints
- Support for Gomory (easy) and MIR (hard) cuts


## Table of Contents

Simplex Background<br>Reseeding Simplex<br>Replaying MIP Proofs

Empirical Results

Conclusion

## SOISIMPLEX + RESEED + REPLAY Results

## SMT SOLVER COMPARISON

|  |  | $\mathrm{SOI}+\mathrm{MIP}$ | CVC4 | yices2 | mathsat5 | Z3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| set | \# inst. \# sel. | solved time (s) |
| QF_LRA | 634634 | 6276199 | 6187721 | 6205265 | 61210814 | 6155696 |
| latendresse | $18 \quad 18$ | $18 \quad 129$ | $10 \quad 44$ | 1285 | 1099 | $0 \quad 0$ |
| miplib | $42 \quad 37$ | $\begin{array}{lll}30 & 1530\end{array}$ | 213037 | $23 \quad 2730$ | $17 \quad 5682$ | $18 \quad 2435$ |
| total | - 41 | 341534 | 253041 | 272330 | 215684 | 222436 |

$(A R)=$ Applied either RESEED or Replay, $\mathbf{K}=1000$, \& SOI+MIP is CVC4 1.4 with options

## SMT SOLVER COMPARISON

```
QF_LIA \neg-CONJUNCTIVE
```

|  | SOI+MIP | CVC4 | mathsat5 | Z3 | altergo |
| :--- | :---: | :---: | :---: | :---: | :---: |
| set | \# inst. \# sel. | solved time (s) | solved time (s) | solved time (s) | solved time (s) |

everything

| QF_LIA | 5882 | 5882 | 5738 | $97 \mathbf{K}$ | 5540 | $117 \mathbf{K}$ | 5697 | $88 \mathbf{K}$ | 5513 | $94 \mathbf{K}$ | 5188 | $264 \mathbf{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| conjuncts | 1303 | 1303 | 1249 | $11 \mathbf{K}$ | 1068 | $31 \mathbf{K}$ | 1154 | $33 \mathbf{K}$ | 1039 | $19 \mathbf{K}$ | 1232 | 2055 | (AR) $\neg$ conjuntive


| convert | 319 | 282 | 208 | 9646 | 193 | 9343 | 274 | 1876 | 282 | 118 | 166 | 272 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| bofill-* | 652 | 460 | 460 | 5401 | 458 | 4490 | 460 | 1519 | 460 | 2060 | 67 | 55 |
| CIRC | 51 | 11 | 11 | 0 | 11 | 0 | 11 | 0 | 11 | 0 | 11 | 0 |
| calypto | 37 | 37 | 37 | 3 | 37 | 3 | 37 | 6 | 36 | 5 | 35 | 24 |
| nec-smt | 2780 | 207 | 207 | $17 \mathbf{K}$ | 207 | $18 \mathbf{K}$ | 207 | $17 \mathbf{K}$ | 201 | 7209 | 184 | 23 K |
| wisa | 5 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 |
| total | - | 998 | 924 | $32 \mathbf{K}$ | 907 | $31 \mathbf{K}$ | 990 | $21 \mathbf{K}$ | 991 | 9392 | 464 | $24 \mathbf{K}$ |

$(\mathrm{AR})=$ Applied either RESEED or REPLAY, $\mathbf{K}=1000$, \& SOI+MIP is CVC4 1.4 with options
AltErgo is using $\left[\mathrm{BCC}^{+}{ }^{12}\right]$

## SMT SOLVER COMPARISON

```
QF_LIA CONJUNCTIVE
```

|  | SOI+MIP | CVC4 | mathsat5 | Z3 | altergo |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| set | \# inst. \# sel. | solved time (s) |

everything

| QF_LIA | 5882 | 5882 | 5738 | $97 \mathbf{K}$ | 5540 | $117 \mathbf{K}$ | 5697 | $88 \mathbf{K}$ | 5513 | $94 \mathbf{K}$ | 5188 | $264 \mathbf{K}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| conjuncts | 1303 | 1303 | 1249 | $11 \mathbf{K}$ | 1068 | $31 \mathbf{K}$ | 1154 | $33 \mathbf{K}$ | 1039 | $19 \mathbf{K}$ | 1232 | 2055 |

(AR) conjuntive

| dillig | 233 | 189 | 189 | 49 | 157 | 9823 | 188 | 7185 | 166 | 1269 | 189 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| miplib2003 | 16 | 8 | 4 | 307 | 4 | 1283 | 5 | 354 | 5 | 1089 | 0 | 0 |
| prime-cone | 37 | 37 | 37 | 2 | 37 | 2 | 37 | 1 | 37 | 2 | 37 | 1 |
| slacks | 233 | 188 | 166 | 61 | 93 | 2003 | 119 | 4741 | 90 | 1994 | 188 | 84 |
| CAV_2009 | 591 | 424 | 424 | 69 | 346 | $10 \mathbf{K}$ | 421 | $10 \mathbf{K}$ | 354 | 2759 | 423 | 323 |
| cut_lem. | 93 | 74 | 62 | 9581 | 64 | 6865 | 45 | 9472 | 38 | 5858 | 74 | 267 |
| total | - | 920 | 882 | $10 \mathbf{K}$ | 701 | $30 \mathbf{K}$ | 815 | $31 \mathbf{K}$ | 690 | $12 \mathbf{K}$ | 911 | 680 |

$(A R)=$ Applied either RESEED or RepLAY, $\mathbf{K}=1000$, \& SOI+MIP is CVC4 1.4 with options

## COMPARISON WITH CONJUNCTIVE SOLVERS

|  | SOI+MIP |  | cutsat |  | scip |  | glpk |  |  |  |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| set | \# inst. | \# sel. | solved | time (s) | solved | time (s) | solved time (s) | solved time (s) |  |  |
| conjuncts | 1303 | 1303 | 1249 | 11130 | 1018 | 35330 | 1255 | 7164 | 1173 | 8895 |
| (AR) conjuntive |  |  |  |  |  |  |  |  |  |  |
| dillig 233 189 189 49 166 5840 189 42 189 <br> miplib2003 16 8 4 307 6 146 7 17 6 <br> prime-cone 37 37 37 2 37 4 37 1 37 <br> slacks 233 188 166 61 96 6324 161 2361 101 <br> CAV_2009 591 424 424 69 377 17015 424 105 424 <br> cut_lemmas 93 74 62 9581 15 1887 72 1757 71 <br> total - 920 882 10069 697 31216 890 4283 828 |  |  |  |  |  |  |  |  |  |  |

$(A R)=$ Applied either Reseed or RepLay, $\mathbf{K}=1000$, \& SOI+MIP is CVC4 1.4 with options cutsat is using [JdM11]

## QF_LIA RESEED AND REPLAY SUCCESS RATES

|  |  | RESEED |  | REPLAY |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| set | \# inst. | solve int calls | attempts | successes | attempts | successes |
| QF_LIA | 1806 | 3873 | 2559 | 1058 | 652 | 425 |
| convert | 208 | 2130 | 1356 | 1 | 178 | 3 |
| bofill-scheduling | 460 | 254 | 245 | 245 | 0 | 0 |
| CIRC | 11 | 85 | 6 | 5 | 79 | 77 |
| calypto | 37 | 375 | 77 | 23 | 293 | 278 |
| wisa | 1 | 1 | 1 | 1 | 0 | 0 |
| dillig | 189 | 228 | 225 | 185 | 3 | 2 |
| miplib2003 | 4 | 10 | 3 | 3 | 5 | 4 |
| prime-cone | 37 | 37 | 19 | 19 | 18 | 18 |
| slacks | 166 | 195 | 168 | 162 | 3 | 3 |
| CAV_2009 | 424 | 469 | 459 | 414 | 8 | 7 |
| cut_lemmas | 62 | 89 | 0 | 0 | 65 | 33 |

Only includes solved instances

## Table of Contents

Simplex Background<br>Reseeding Simplex<br>Replaying MIP Proofs<br>Empirical Results

Conclusion

## Future Work

- Optimization Modulo Theories
- Logging and replaying FP Farkas's lemma [NS04]
- $k$-precision FP Simplex solver for SMT [CKSW13]


## Replay \& Reseed Summary

- Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main engine!)


## Replay \& Reseed Summary

- Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main engine!)
- Reseeding Simplex
- Helps find models and $\mathbb{R}$-relaxation conflicts
- 1 week to implement [*]


## Replay \& Reseed Summary

- Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main engine!)
- Reseeding Simplex
- Helps find models and $\mathbb{R}$-relaxation conflicts
- 1 week to implement [*]
- Replaying MIP conflicts (significantly more effort) MIP must be white-box and must log proofs!


## REPLAY \& RESEED SUMMARY

- Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main engine!)
- Reseeding Simplex
- Helps find models and $\mathbb{R}$-relaxation conflicts
- 1 week to implement [*]
- Replaying MIP conflicts (significantly more effort) MIP must be white-box and must log proofs!
- Overall helpful, but there are limitations


## Replay \& Reseed Summary

- Integrated a floating point LP/MIP solver (GLPK) (Backup. Not the main engine!)
- Reseeding Simplex
- Helps find models and $\mathbb{R}$-relaxation conflicts
- 1 week to implement [*]
- Replaying MIP conflicts (significantly more effort) MIP must be white-box and must log proofs!
- Overall helpful, but there are limitations

Thank you for your attention!

## What happened on the convert family?

- MIP solver is wrong about feasibility too often
- Variables are in bounds up to a "dual gap"
- Intuitively: Let $a_{i}$ violate $u_{i}$ by a little where little is scaled by the size of the numbers
- Numerically stability of floating points
- Gap is too large for QF_LIA bit-extracts for $\sim m+n>40$

$$
x=2^{m} y+z \wedge z \in\left[0,2^{m}\right), y \in\left[0,2^{n}\right), x \in\left[0,2^{m+n}\right)
$$

- Decreasing the maximum gap leads $\Longrightarrow$ cycling
- Need bigger floating point numbers or more pre-processing


## References I

囦 François Bobot, Sylvain Conchon, Évelyne Contejean, Mohamed Iguernelala, Assia Mahboubi, Alain Mebsout, and Guillaume Melquiond, A Simplex-based extension of Fourier-Motzkin for solving linear integer arithmetic, IJCAR 2012: Proceedings of the 6th International Joint Conference on Automated Reasoning (Manchester, UK) (Bernhard Gramlich, Dale Miller, and Ulrike Sattler, eds.), Lecture Notes in Computer Science, vol. 7364, Springer, June 2012, pp. 67-81.

E Diego Caminha Barbosa de Oliveira and David Monniaux, Experiments on the feasibility of using a floating-point simplex in an SMT solver, Workshop on Practical Aspects of Automated Reasoning (PAAR), CEUR Workshop Proceedings, 2012.

## References II

囦 William Cook，Thorsten Koch，Daniel E．Steffy，and Kati Wolter，A hybrid branch－and－bound approach for exact rational mixed－integer programming，Math．Program．Comput． 5 （2013），no．3，305－344．

击 Bruno Dutertre and Leonardo de Moura，Integrating Simplex with DPLL（T），Tech．Report SRI－CSL－06－01， Computer Science Laboratory，SRI International，May 2006.

围 Germain Faure，Robert Nieuwenhuis，Albert Oliveras，and Enric Rodríguez－Carbonell，Sat modulo the theory of linear arithmetic：Exact，inexact and commercial solvers，SAT，2008， pp．77－90．

## References III

Dejan Jovanović and Leonardo Mendonça de Moura, Cutting to the chase solving linear integer arithmetic, CADE, 2011, pp. 338-353.

圊 Timothy King, Clark Barrett, and Bruno Dutertre, Simplex with sum of infeasibilities for SMT, Proceedings of the $13^{\text {th }}$ International Conference on Formal Methods In Computer-Aided Design (FMCAD '13), Lecture Notes in Computer Science, November 2013, pp. 189-196.

目 David Monniaux, On using floating-point computations to help an exact linear arithmetic decision procedure, Computer-aided verification (CAV), Lecture Notes in Computer Science, no. 5643, Springer-Verlag, 2009, pp. 570-583.

## References IV

国
Arnold Neumaier and Oleg Shcherbina, Safe bounds in linear and mixed-integer linear programming, Mathematical Programming 99 (2004), no. 2, 283-296.

圊
Yinlei Yu and Sharad Malik, Lemma learning in smt on linear constraints, Theory and Applications of Satisfiability Testing - SAT 2006 (Armin Biere and CarlaP. Gomes, eds.), Lecture Notes in Computer Science, vol. 4121, Springer Berlin Heidelberg, 2006, pp. 142-155.

# APPENDIX 

Resolution Phase

The proof reconstruction phase uses the following heuristics:

- All up-branch conflicts are resolved with all down-branch conflicts
(DP-style)
- Performed eager subsumption checking Pays for itself by keeping the set of conflicts small
- Non-chronological backtracks when possible (One branch has a conflict not involving its branch literal)

