Turbo-Charging Lemmas on Demand with Don't Care Reasoning

Aina Niemetz, Mathias Preiner and Armin Biere

Institute for Formal Models and Verification (FMV) Johannes Kepler University, Linz, Austria http://fmv.jku.at/

> FMCAD 2014 October 21 - 24, 2014 Lausanne, Switzerland

Introduction

Lemmas on Demand

- so-called lazy SMT approach
- our SMT solver Boolector
 - o implements Lemmas on Demand for
 - o the quantifier-free theory of
 - fixed-size bit vectors
 - arrays
- recently: Lemmas on Demand for Lambdas [DIFTS'13]
 - o generalization of Lemmas on Demand for Arrays [JSAT'09]
 - o arrays represented as uninterpreted functions
 - o array operations represented as lambda-terms
 - o reads represented as function applications

Lemmas on Demand Workflow: Original Procedure LOD

- bit vector formula abstraction (bit vector skeleton)
- enumeration of truth assignments (candidate models)
- iterative refinement with lemmas until convergence

Lemmas on Demand Workflow: Original Procedure LOD

- → each candidate model is a full truth assignment of the formula abstraction
- full candidate model needs to be checked for consistency w.r.t. theories

Lemmas on Demand Workflow: Original Procedure LOD

- → abstraction refinement usually the most costly part of LOD
 - → cost generally correlates with number of refinements
 - → checking the full candidate model often not required
 - → small subset responsible for satisfying formula abstraction

Lemmas on Demand Workflow: Optimized Procedure LOD_{opt}

- focus LOD on the **relevant** parts of the input formula
- exploit a posteriori observability don't cares
- partial model extraction prior to consistency checking
 - → subsequently reduces the cost for consistency checking

Lemmas on Demand Example: Input Formula

Example. $\psi_1 \equiv i \neq k \land (f(i) = e \lor f(k) = v) \land v = ite(i = j, e, g(j))$ and eq and eq ite or 2 3 eq eq eq var var var var var $apply_2$ $apply_1$ apply₃ е v k g

Example. Bit Vector Skeleton

Example. Full Candidate Model

Example. Full Candidate Model

Partial Model Extraction

Most intuitive: use justification-based approach

 \longrightarrow Justification-based techniques in the context of

- SMT
 - prune the search space of DPLL(T) [ENTCS'05, MSRTR'07]
- Model checking
 - prune the search space of BMC [CAV'02]
 - generalize proof obligations in PDR [EénFMCAD'11, ChoFMCAD'11]
 - o generalize candidate counter examples (CEGAR) [LPAR'08]

Partial Model Extraction

Our approach: Dual propagation-based partial model extraction

- exploiting the duality of a formula abstraction ψ
 - \rightarrow assignments satisfying ψ (the primal channel) falsify its negation $\neg \psi$ (the dual channel)
- motivated by dual propagation techniques in QBF [AAAI'10]
 - one solver with two channels (online approach)
 - o symmetric propagation between primal and dual channel
- here: offline dual propagation
 - o two solvers, one solver per channel
 - o consecutive propagation between primal and dual channel
 - \longrightarrow primal generates full assignment before dual enables partial model extraction based on the primal assignment

Partial Model Extraction

Dual Propagation-Based Approach

Example. Boolean Level

Primal channel: **Dual** channel:

$$\psi_2 \equiv (a \land b) \lor (c \land d) \neg \psi_2 \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$$

Example. Boolean Level

Primal channel: Dual channel:

$$\psi_2 \equiv (a \land b) \lor (c \land d)$$
$$\neg \psi_2 \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$$

.

Primal assignment:

$$\sigma(\psi_2) \equiv \{\sigma(a) = \top, \, \sigma(b) = \top, \, \sigma(c) = \top, \, \sigma(d) = \top\}$$

Example. Boolean Level

Primal channel: $\psi_2 \equiv (a \land b) \lor (c \land d)$ Dual channel: $\neg \psi_2 \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$

 $\label{eq:primal assignment:} \begin{array}{ll} \sigma(\psi_2) \equiv \{\sigma(a) = \top, \ \sigma(b) = \top, \ \sigma(c) = \top, \ \sigma(d) = \top \} \end{array}$

Fix values of inputs via **assumptions** to the dual solver: Dual assumptions: $\{a=\top, b=\top, c=\top, d=\top\}$

Example. Boolean Level

Primal channel: $\psi_2 \equiv (a \land b) \lor (c \land d)$ Dual channel: $\neg \psi_2 \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$

 $\label{eq:primal assignment:} \mathsf{Primal assignment:} \quad \sigma(\psi_2) \equiv \{\sigma(a) = \top, \, \sigma(b) = \top, \, \sigma(c) = \top, \, \sigma(d) = \top \}$

Fix values of inputs via **assumptions** to the dual solver: Dual assumptions: $\{a=\top, b=\top, c=\top, d=\top\}$

Failed assumptions: $\{a = \top, b = \top\}$

 \longrightarrow sufficient to falsify $\neg \psi_2$ \longrightarrow sufficient to satisfy ψ_2

Example. Boolean Level

Primal channel: $\psi_2 \equiv (a \land b) \lor (c \land d)$ Dual channel: $\neg \psi_2 \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$

 $\label{eq:primal assignment:} \begin{array}{ll} \sigma(\psi_2) \equiv \{\sigma(a) = \top, \ \sigma(b) = \top, \ \sigma(c) = \top, \ \sigma(d) = \top \} \end{array}$

Fix values of inputs via **assumptions** to the dual solver: Dual assumptions: $\{a=\top, b=\top, c=\top, d=\top\}$

Failed assumptions: $\{a = \top, b = \top\}$ Partial Model \rightarrow sufficient to falsify $-\psi_2$ \rightarrow sufficient to satisfy ψ_2

 \longrightarrow structural don't care reasoning simulated via the dual solver

 \longrightarrow no structural SAT solver necessary

Example. (ctd) Input formula: $\psi_2 \equiv (a \wedge b) \vee (c \wedge d)$ = T $\mathsf{CNF}(\psi_2) \equiv (\neg o \lor x \lor y) \land (\neg x \lor o) \land$ Primal SAT solver: \equiv ? $(\neg y \lor o) \land (\neg x \lor a) \land$ $(\neg x \lor b) \land (\neg a \lor \neg b \lor x) \land$ $(\neg y \lor c) \land (\neg y \lor d) \land$ $(\neg c \lor \neg d \lor u)$ $\mathsf{CNF}(\neg\psi_2) \equiv (\neg a \lor \neg b) \land (\neg c \lor \neg d)$ Dual SAT solver: $\equiv \bot$ **Dual assumptions:** $\{a = \top, b = \top, c = \top, d = \top\}$ $\{a = \top, b = \top\}$ Partial Model:

 in contrast to partial model extraction techniques based on iterative removal of unnecessary assignments on the CNF level [FMCAD'13]

- \longrightarrow we lift this approach to the word level
 - **Primal channel:** $\Gamma \equiv \alpha(\pi) \land \xi \equiv \alpha(\pi) \land l_1 \land ... \land l_{i-1}$ **Dual channel:** $\neg \Gamma$
- \longrightarrow one SMT solver per channel
- \longrightarrow one single dual solver instance to maintain $\neg \Gamma$ over all iterations

Example. Word Level

$$\begin{split} \psi_1 &\equiv i \neq k \land (f(i) = e \lor f(k) = v) \land v = ite(i = j, e, g(j)) \\ \alpha(\psi_1) &\equiv i \neq k \land (\alpha(\mathsf{apply}_1) = e \lor \alpha(\mathsf{apply}_2) = v) \land v = ite(i = j, e, \alpha(\mathsf{apply}_3)) \end{split}$$

 $\left. \begin{array}{cc} {\rm Primal \ solver:} & \alpha(\psi_1) \\ {\rm Dual \ solver:} & \neg \alpha(\psi_1) \end{array} \right\} \ {\rm Formula \ abstraction \ and \ its \ negation} \end{array} \right\}$

Primal assignment:

$$\begin{aligned} \sigma(\psi_2) &\equiv \{ \sigma(i) = 00, \, \sigma(j) = 00, \, \sigma(e) = 00, \, \sigma(v) = 00, \, \sigma(k) = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \, \alpha(\mathsf{apply}_2) = 00, \, \alpha(\mathsf{apply}_3) = 00 \} \end{aligned}$$

Fix values of inputs via assumptions to the dual solver: Dual assumptions:

$$\begin{aligned} \sigma(\psi_2) &\equiv \{i = 00, \ j = 00, \ e = 00, \ v = 00, \ k = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \ \alpha(\mathsf{apply}_2) = 00, \ \alpha(\mathsf{apply}_3) = 00 \} \end{aligned}$$

Failed assumptions:

 $\{i = 00, j = 00, e = 00, v = 00, k = 01, \alpha(apply_1) = 00\}$

Example. Word Level

$$\begin{split} \psi_1 &\equiv i \neq k \land (f(i) = e \lor f(k) = v) \land v = ite(i = j, e, g(j)) \\ \alpha(\psi_1) &\equiv i \neq k \land (\alpha(\mathsf{apply}_1) = e \lor \alpha(\mathsf{apply}_2) = v) \land v = ite(i = j, e, \alpha(\mathsf{apply}_3)) \end{split}$$

Primal solver: $\alpha(\psi_1)$ Dual solver: $\neg \alpha(\psi_1)$ Formula abstraction and its negation

Primal assignment:

$$\begin{aligned} \sigma(\psi_2) &\equiv \{ \sigma(i) = 00, \, \sigma(j) = 00, \, \sigma(e) = 00, \, \sigma(v) = 00, \, \sigma(k) = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \, \alpha(\mathsf{apply}_2) = 00, \, \alpha(\mathsf{apply}_3) = 00 \} \end{aligned}$$

Fix values of inputs via assumptions to the dual solver: Dual assumptions:

$$\begin{aligned} \sigma(\psi_2) &\equiv \{i = 00, \ j = 00, \ e = 00, \ v = 00, \ k = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \ \alpha(\mathsf{apply}_2) = 00, \ \alpha(\mathsf{apply}_3) = 00\} \end{aligned}$$

Failed assumptions:Partial Model $\{i = 00, j = 00, e = 00, v = 00, k = 01, \alpha(apply_1) = 00\}$

Example. Word Level

$$\begin{split} \psi_1 &\equiv i \neq k \land (f(i) = e \lor f(k) = v) \land v = ite(i = j, e, g(j)) \\ \alpha(\psi_1) &\equiv i \neq k \land (\alpha(\mathsf{apply}_1) = e \lor \alpha(\mathsf{apply}_2) = v) \land v = ite(i = j, e, \alpha(\mathsf{apply}_3)) \end{split}$$

Primal solver: $\alpha(\psi_1)$ Dual solver: $\neg \alpha(\psi_1)$ Formula abstraction and its negation

Primal assignment:

Failed assumptions:

$$\begin{aligned} \sigma(\psi_2) &\equiv \{ \sigma(i) = 00, \, \sigma(j) = 00, \, \sigma(e) = 00, \, \sigma(v) = 00, \, \sigma(k) = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \, \alpha(\mathsf{apply}_2) = 00, \, \alpha(\mathsf{apply}_3) = 00 \} \end{aligned}$$

Fix values of inputs via assumptions to the dual solver: Dual assumptions:

$$\begin{split} \sigma(\psi_2) &\equiv \{i = 00, \ j = 00, \ e = 00, \ v = 00, \ k = 01, \\ \alpha(\mathsf{apply}_1) &= 00, \ \alpha(\mathsf{apply}_2) = 00, \ \alpha(\mathsf{apply}_3) = 00\} \end{split}$$

Consistency Check

 $\{i = 00, j = 00, e = 00, v = 00, k = 01, \alpha(apply_1) = 00\}$

Experimental Evaluation Configuration

Four Configurations:

Boolector_{sc}

 \longrightarrow version entering SMTCOMP'12, winner of the QF_AUFBV track

Boolector_{ba}

→ current Boolector base version (new LOD for Lambdas engine)

Boolector_{dp}

 \longrightarrow with dual propagation-based partial model extraction enabled

- Boolector_{ju}
 - \longrightarrow justification-based partial model extraction approach for comparison
 - o determine a posteriori observability don't cares
 - $\longrightarrow\,$ skip lines that do not influence the output of an and-gate under its current assignment
 - if both inputs of an and-gate are controlling (\bot)
 - \longrightarrow skip either one based on a minimum cost heuristic

Experimental Evaluation Configuration

Two Benchmark Sets:

SMT'12: 149 benchmarks

all non-extensional QF_AUFBV benchmarks in SMTCOMP'12

- Selected: 173 benchmarks all non-extensional QF_AUFBV benchmarks (13696) in the SMT-LIB (pre-SMTCOMP'14) for which Boolector_{sc} required at least 10 seconds
- \longrightarrow 58 benchmarks shared between both sets
- \longrightarrow all experiments on 2.83 GHz Intel Core 2 Quad machines with 8GB RAM running Ubuntu 12.04
- → time limit: 1200 seconds, memory limit: 7GB

Experimental Evaluation

Overall results on sets SMT'12 and Selected.

	Solver	Solved (sat/unsat)	то	МО	Time [s]	DS [s]
2	Boolector _{sc}	140 (83/57)	9	0	15882	-
Γ, Ι	Boolector _{ba}	141 (83/58)	8	0	19312	-
Б	Boolectoriu	142 (84/58)	7	0	15709	-
S	Boolector _{dp}	142 (84/58)	7	0	20992	5045
p	Boolector _{sc}	116 (72/44)	50	7	85863	-
cte	Boolector _{ba}	121 (76/45)	45	7	76104	-
ele(Boolectoriu	130 (85/45)	36	7	63202	-
Se	Boolector _{dp}	130 (85/45)	36	7	66991	4705

TO ... time out Time ... total CPU time

MO ... memory out

DS ... dual solver overhead

Experimental Evaluation Overview

Overall results on sets SMT'12 and Selected.

	Solver	Solved (sat/unsat)	то	МО	Time [s]	DS [s]
2	Boolector _{sc}	140 (83/57)	9	0	15882	-
Γ'1	Boolector _{ba}	141 (83/58)	8	0	19312	-
2	Boolector _{iu}	142 (84/58)	7	0	15709	-
S	Boolector _{dp}	142 (84/58)	7	0	20992	5045
p	Boolector _{sc}	116 (72/44)	50	7	85863	-
cte	Boolector _{ba}	121 (76/45)	45	7	76104	-
e/e	Boolector _{iu}	130 (85/45)	36	7	63202	-
Š	Boolectordp	130 (85/45)	36	7	66991	4705

TO ... time out MO ... memory out Time ... total CPU time DS ... dual solver overhead

- SMT'12: 1 additional instance (sat)
- Selected: 9 additional instances (all sat)

Results for commonly solved instances on sets SMT'12 and Selected.

	Caluar	Time [s]			SAT [s]			DS overhead [s]			LOD		
	Solver	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.
2	Boolector _{sc}	4129	29	2	3662	26	0	-	-	-	30741	221	0
1.1	Boolector _{ba}	8564	61	6	7262	52	1	-	-	-	33013	237	0
LWS	Boolector _{ju}	6362	45	4	5226	37	0	-	-	-	23660	170	0
	Boolector _{dp}	10145	72	5	4700	33	0	4109	29	0	33492	240	0
Ρ	Boolector _{sc}	15037	133	35	12836	113	34	-	-	-	104646	926	175
cte	Boolector _{ba}	10001	88	35	8330	73	22	-	-	-	31752	280	88
ele	Boolector _{ju}	8182	72	29	6639	58	19	-	-	-	28215	249	28
Š	$Boolector_{dp}$	10838	95	30	6164	54	15	3036	26	0	24866	220	29

Time ... total CPU time DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver) LOD ... number of lemmas generated

- SMT'12: 139 (out of 149) benchmarks, 82 sat, 57 unsat
 - \longrightarrow not representative:

 ${\sim}50\%$ solved without a single refinement iteration

• Selected: 113 (out of 173) benchmarks, 70 sat, 43 unsat

Results for commonly solved instances on sets SMT'12 and Selected.

	Caluar	Time [s]				SAT [s]			DS overhead [s]			LOD		
	Solver	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	
2	Boolector _{sc}	4129	29	2	3662	26	0	-	-	-	30741	221	0	
1.1	Boolector _{ba}	8564	61	6	7262	52	1	-	-	-	33013	237	0	
SM	Boolector _{ju}	6362	45	4	5226	37	0	-	-	-	23660	170	0	
	Boolector _{dp}	10145	72	5	4700	33	0	4109	29	0	33492	240	0	
P	Boolector _{sc}	15037	133	35	12836	113	34	-	-	-	104646	926	175	
cte	Boolector _{ba}	10001	88	35	8330	73	22	-	-	-	31752	280	88	
ele	Boolector _{ju}	8182	72	29	6639	58	19	-	-	-	28215	249	28	
S	Boolector _{dp}	10838	95	30	6164	54	15	3036	26	0	24866	220	29	

Time ... total CPU time DS overhead ... dual solver overhead SAT ... SAT solver runtime (primal solver) LOD ... number of lemmas generated

- Boolector_{sc} implements old LOD engine

 - $\longrightarrow\,$ needs further investigation

Results for commonly solved instances on sets SMT'12 and Selected.

	Caluar	Time [s]			SAT [s]			DS overhead [s]			LOD		
	Solver	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.
2	Boolector _{sc}	4129	29	2	3662	26	0	-	-	-	30741	221	0
1.1	Boolector _{ba}	8564	61	6	7262	52	1	-	-	-	33013	237	0
N	Boolectorju	6362	45	4	5226	37	0	-	-	-	23660	170	0
S	Boolector _{dp}	10145	72	5	4700	33	0	4109	29	0	33492	240	0
P	Boolector _{sc}	15037	133	35	12836	113	34	-	-	-	104646	926	175
cte	Boolector _{ba}	10001	88	35	8330	73	22	-	-	-	31752	280	88
ele	Boolectorju	8182	72	29	6639	58	19	-	-	-	28215	249	28
S	Boolector _{dp}	10838	95	30	6164	54	15	3036	26	0	24866	220	29

Time ... total CPU time DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver) LOD ... number of lemmas generated

• sat solver runtime (SAT)

 $\longrightarrow~Boolector_{dp}~$ most notable improvement on both sets

Results for commonly solved instances on sets SMT'12 and Selected.

	Caluar	Time [s]			SAT [s]			DS overhead [s]			LOD		
	Solver	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.
2	Boolector _{sc}	4129	29	2	3662	26	0	-	-	-	30741	221	0
1.1	Boolector _{ba}	8564	61	6	7262	52	1	-	-	-	33013	237	0
N	Boolectorju	6362	45	4	5226	37	0	-	-	-	23660	170	0
S	Boolector _{dp}	10145	72	5	4700	33	0	4109	29	0	33492	240	0
P	Boolector _{sc}	15037	133	35	12836	113	34	-	-	-	104646	926	175
cte	Boolector _{ba}	10001	88	35	8330	73	22	-	-	-	31752	280	88
ele	Boolectorju	8182	72	29	6639	58	19	-	-	-	28215	249	28
Se	Boolector _{dp}	10838	95	30	6164	54	15	3036	26	0	24866	220	29

Time ... total CPU time DS overhead ... dual solver overhead SAT ... SAT solver runtime (primal solver) LOD ... number of lemmas generated

- number of lemmas generated (LOD)
 - SMT'12:
 - Boolector_{ju} least number of lemmas
 - Boolector_{dp} and Boolector_{ba} approx. the same
 - \longrightarrow on 14 instances 1.5-2.6 \times more lemmas than Boolector_{ba}
 - Selected: Boolector_{dp} most notable improvement

Results for commonly solved instances on sets SMT'12 and Selected.

	Caluar	Time [s]			SAT [s]			DS overhead [s]			LOD		
	Solver	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.	Total	Avg.	Med.
2	Boolector _{sc}	4129	29	2	3662	26	0	-	-	-	30741	221	0
1.1	Boolector _{ba}	8564	61	6	7262	52	1	-	-	-	33013	237	0
N	Boolectorju	6362	45	4	5226	37	0	-	-	-	23660	170	0
S	Boolector _{dp}	10145	72	5	4700	33	0	4109	29	0	33492	240	0
P	Boolector _{sc}	15037	133	35	12836	113	34	-	-	-	104646	926	175
cte	Boolector _{ba}	10001	88	35	8330	73	22	-	-	-	31752	280	88
ele	Boolectorju	8182	72	29	6639	58	19	-	-	-	28215	249	28
Se	Boolector _{dp}	10838	95	30	6164	54	15	3036	26	0	24866	220	29

Time ... total CPU time DS overhead ... dual solver overhead

SAT ... SAT solver runtime (primal solver) LOD ... number of lemmas generated

- dual solver overhead \sim 30-40% in total
 - on $\leq 10\%$ of the benchmarks 50-70% of the total runtime
 - on >50% of the benchmarks <10% of the total runtime

 \longrightarrow Boolector_{dp} outperforms others disregarding DS overhead \longrightarrow online dual propagation approach: DS overhead negligible

Experimental Evaluation Boolector_{dp} vs Boolector_{ba}

Conclusion

\longrightarrow dual propagation-based optimization for Lemmas on Demand

- don't care reasoning on full candidate models improves performance
- our offline dual propagation-based approach competitive (in spite of introducing considerable overhead)
 - $\longrightarrow~\text{Boolector}_{ju}~~\text{won}~\text{QF}_\text{ABV}$ track of SMTCOMP'14
 - \longrightarrow **Boolector**_{dp} came in close second

Future work: online dual propagation approach, promises

- negligible or no dual solver overhead
- further improvment of overall performance by enabling partial model extraction even before a full candidate model has been generated
- requires interleaved execution between primal and dual solver

$\begin{array}{c} \text{Appendix} \\ \text{Boolector}_{dp} \text{ vs } \text{Boolector}_{ju} \end{array}$

DS overhead included

DS overhead not included

$\begin{array}{c} \text{Appendix} \\ \text{Boolector}_{dp} \text{ vs } \text{Boolector}_{sc} \end{array}$

DS overhead included

DS overhead not included

References I

- J. D. Bingham and A. J. Hu. Semi-formal bounded model checking. In CAV'02, volume 2404 of LNCS. Springer, 2002.
- C. Barrett and J. Donham. Combining sat methods with non-clausal decision heuristics. ENTCS, 125(3), 2005.
- L. de Moura and N. Bjørner. Relevancy propagation. Technical Report MSR-TR-2007-140, Microsoft Research, 2007.
- Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal verification tool for Verilog designs. In LPAR'08, volume 5330 of LNCS. Springer, 2008.
- R. Brummayer and A. Biere. Lemmas on demand for the extensional theory of arrays. JSAT, 6(1-3), 2009.
- H. Chockler, A. Ivrii, A. Matsliah, S. Moran, and Z. Nevo. Incremental formal verification of hardware. In FMCAD'11. FMCAD Inc., 2011.
- N. Eén, A. Mishchenko, and R. K. Brayton. Efficient implementation of property directed reachability. In FMCAD'11. FMCAD Inc., 2011.

References II

- D. Déharbe, P. Fontaine, D. Le Berre and B. Mazure. Computing prime implicants. In FMCAD'13. IEEE, 2013.
- A. Goultiaeva and F. Bacchus. Exploiting QBF duality on a circuit representation. In AAAI'10. AAAI Press, 2010.
- M. Preiner, A. Niemetz and A. Biere. Lemmas on Demand for Lambdas. In DIFTS'13, volume 1130 of CEUR Workshop Proceedings, 2013.