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MOTIVATION

Bug-hunting tools, like static analyzers, have matured remarkably.

I Regularly used in the software development industry

I Strengths: easy to use; largely automatic

I Weaknesses: cannot prove complex invariants; cannot
prove the absence of bugs

We want to formally verify properties of (x86 machine-code)
programs that cannot be established in the foreseeable future

by automatic tools.
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OUR APPROACH

Focus: Mechanical verification of user-level x86 machine-code
programs that request services from an operating system via

system calls

I Specify the x86 ISA and Linux/FreeBSD
system calls in ACL2 program-
ming/proof environment

I Validate the above specification against
real hardware and software

I Reason about x86 machine-code programs using this
specification
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WHAT’S SPECIAL ABOUT SYSTEM CALLS?

I From the point of view of a programmer, system calls are
non-deterministic; different runs can yield different
results on the same machine.

I This makes it non-trivial to reason about user-level
programs that make system calls.

Proved functional correctness of a
word count program
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CORRECTNESS OF THE WORD COUNT PROGRAM

Assembly Program Snippet Pseudo-code: Specification Function

...
push %rbx
lea -0x9(%rbp),%rax
mov %rax,-0x20(%rbp)
mov $0x0,%rax
xor %rdi,%rdi
mov -0x20(%rbp),%rsi
mov $0x1,%rdx
syscall
mov %eax,%ebx
mov %ebx,-0x10(%rbp)
movzbl -0x9(%rbp),%eax
movzbl %al,%eax

...

ncSpec(offset, str, count):
if (EOF-TERMINATED(str) &&

offset < len(str)) then
c := str[offset]
if (c == EOF) then

return count
else

count := (count + 1) mod 2^32
ncSpec(1 + offset, str, count)

endif
endif

Theorem

preconditions(ripi, x86i) ∧ x86f = x86-run(clk(x86i), x86i)
=⇒

getNc(x86f) = ncSpec(Offset(x86i), Str(x86i), 0)
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X86 ISA + SYSTEM CALLS SPECIFICATION

I Formalization of the x86 ISA, with syscall extended by a
specification of Linux and FreeBSD system calls

I Formal and executable specification

I Memory model: 64-bit linear address space
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X86 ISA MODEL IN ACL2

I Interpreter-style operational semantics

I Semantics of a program is given by the effect it has on the
state of the machine.

I State-transition function is characterized by a recursively
defined interpreter. We call this state transition function
x86-run.
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FORMALIZATION: X86 STATE

Component Description
registers general-purpose, segment,

debug, control, floating
point, MMX, model-specific

rip instruction pointer
flg flags register
env environment field
mem memory
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FORMALIZATION: STATE TRANSITION FUNCTION

I State transition function: fetch, decode & execute

I Each instruction has its own semantic function
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FACTSHEET: X86 ISA MODEL

I 64-bit mode of Intel’s IA-32e mode

I 221 general and 96 SSE/SSE2 opcodes

I Implementation of all addressing modes

I Lines of Code: ∼40,000

I Execution speed:
up to 3.3 million instructions/second

Machine used: 3.50GHz Intel Xeon E31280 CPU

14| 31



INTRODUCTION SIMULATION AND REASONING FRAMEWORK CODE PROOFS CONCLUSION AND FUTURE WORK

ASSESSING THE ACCURACY OF THE ISA MODEL
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SYSTEM CALLS MODEL: EXTENDING SYSCALL

System calls in the real world

System calls in our x86 model
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BENEFITS OF THE SYSTEM CALL MODEL

I Useful for verifying application programs while assuming
that services like I/O operations are provided reliably by
the OS

We check such assumptions during co-simulations.

I Removes the complexity of low-level interactions
between the OS and the processor

- Faster simulation
- Simpler reasoning

I Provides the same abstraction for reasoning as is provided
by an OS for programming
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EXECUTING AND REASONING ABOUT SYSTEM CALLS

I Recall: system calls are non-deterministic from the point of
view of a programmer

I We need to be able to:
1. Efficiently execute runs of a program with system calls on

concrete data, and
2. Formally reason about such a program given symbolic data
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SYSTEM CALLS: EXECUTION MODE

I In execution mode, the model interacts directly with the OS.

I System call service is provided by raw Lisp functions to obtain
“real” results from the OS.

I Simulation of all instructions other than syscall happens
within ACL2 (and hence, Lisp).
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SYSTEM CALLS: EXECUTION MODE

I These raw Lisp functions should not be used for
reasoning since they are impure.

I It is critical for our framework to prohibit proofs of
theorems that unconditionally state that some system call
returns a specific value.
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SYSTEM CALLS: LOGICAL MODE

I The logical mode incorporates an environment env field
into the x86 state.

I env represents the part of the external world that affects or
is affected by system calls.

I Kind of theorems about system calls that can be proved:

Given a particular characterization of the environment, a
system call returns some specific value.
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RELATIONSHIP: EXECUTION & LOGICAL MODE

I Identical for all instructions except syscall:

All other instructions have the same definitions in both
these modes.

I Correspond in the case of syscall instruction if:

The env field in the logical mode is an accurate
characterization of the real environment.

Then, the execution of system calls produces the same
results in the logical mode as in the execution mode.
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SYSTEM CALLS MODEL VALIDATION

Task A: Validate the logical mode against the execution mode

- Extensive code reviews

- Comparing program runs in the execution mode to
corresponding runs in the logical mode
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SYSTEM CALLS MODEL VALIDATION

Task B: Validate the execution mode against the processor +
system call service provided by the OS

- Validating the functions that marshal the input arguments and
return values from the raw Lisp functions
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X86 MACHINE-CODE PROOFS USING env

Word Count Program
Theorem

preconditions(ripi, x86i) ∧ x86f = x86-run(clk(x86i), x86i)
=⇒

getNc(x86f) = ncSpec(Offset(x86i), Str(x86i), 0)

Preconditions: env specifies a subset of the file system.

1. File descriptor is valid.

2. File contents are terminated by a valid EOF character.

3. File is open in a mode that allows reading.

4. Initial file offset points to a location within the file contents.
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AUTOMATION OF X86 MACHINE-CODE PROOFS

I Developed lemma libraries to automate reasoning about
user-level code

I Example of a useful theorem that was proved
automatically:

The program does not modify unintended regions of
memory.
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CONCLUSION AND FUTURE WORK

I Mechanical verification of user-level x86 machine-code
programs with our evolving x86 ISA model

I Formal analysis of user-level programs exhibiting
non-determinism demonstrated to be tractable

- SYSCALL, RDRAND instructions

I Led to the development of ACL2 lemma libraries that
help automate machine-code verification

I Plans for the immediate future:
- Improve/add to our lemma libraries
- Support SYSCALL and SYSRET on the ISA level
- Simulate and then reason about kernel code
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