## Computer Engineering of TU Delft

# Design of CAD Module for JIT Extensible Processor Customized for Placement and Routing

T. Marconi S.H. Daryanavard M. Eshghi

### Architecture of Warp Processor



Vahid proposed the first JIT extensible processor named



initially Warp In Warp Processor. processor, as applications run on microprocessor which is general propose processor. The profiler detects the binary's kernels of applications, dynamically; then the On-chip CAD Module synthesizes and maps those kernels online to run on FPGA; results are sent back to microprocessor. As a result program's running might suddenly speed up by a factor of 2, 10, or even more. In other words, the running time "warps".

The most Important Challenge **Execution time of CAD Module** 

FPGA design automation consumes ultra-long time. Includes the phases to produce a FPGA bitstream: synthesis, technology mapping, place and route

Proposed Idea

In this paper, application-specific instruction set processor (ASIP) has been proposed as a promising solution to speed up CAD algorithm to be used in JIT extensible processor.

#### **Placement algorithm and Functional Units**

Proposed FPGA Placement: The presented algorithm consists of two stages. In first stage is force-directed based, Second stage is a revised SA placement. At the end of second stage we have 2.33X speedup with the same quality of VPR. First and second stages are called Long Wire Reduction Temperature (LWR) and Low SA (LTSA), respectively, which pseudo code of stages was shown in below figure.

| First Stage of Diacoment Algorithm (IWD) ( |                                                                 |  |  |  |  |
|--------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                                            | rst stage of Placement Algorithm (LWK) {                        |  |  |  |  |
| 1.                                         | For (outer loop)                                                |  |  |  |  |
| 2.                                         | For (inner loop)                                                |  |  |  |  |
| 3.                                         | <i>F<sub>Place</sub>=Compute Forces for all Cells;</i>          |  |  |  |  |
| 4.                                         | Place=Update Position of Cells regarding $F_{Place}$ ;          |  |  |  |  |
| 5.                                         | End for;                                                        |  |  |  |  |
| 6.                                         | Place=Integer Rounding (Place);                                 |  |  |  |  |
| 7.                                         | Place=Overlap Remove (Place, F <sub>Place</sub> );              |  |  |  |  |
| 8.                                         | End for; }                                                      |  |  |  |  |
| Se                                         | cond Stage of Placement Algorithm (LTSA) {                      |  |  |  |  |
| 1.                                         | D=initial d T=Initial TD is high and T is Low Value             |  |  |  |  |
| 2.                                         | Old Cost=Cost (Place);                                          |  |  |  |  |
| 3.                                         | While $(T>0)$                                                   |  |  |  |  |
| 4.                                         | For inner loop                                                  |  |  |  |  |
| 5.                                         | $C_1$ =select cell by uniform random function.;                 |  |  |  |  |
| 6.                                         | $C_2$ =select cell by normal random funct. Regarding $C_1$ & D; |  |  |  |  |
| 7.                                         | New Place=Perturb $(C_1, C_2);$                                 |  |  |  |  |

- *New Cost=Cost (Place):* 8. *9*.
  - Delta Cost=New Cost- Old Cost;
- *If (Delta Cost<0) 10*.

| cement Phase1       | Force<br>Computing<br>Function<br>Function<br>TWL<br>Quadratic<br>Function<br>Coordination<br>Function<br>General<br>ALU |
|---------------------|--------------------------------------------------------------------------------------------------------------------------|
| lacement Phase2 Pla | Rand THPWL Exponential   Function Function Perturb   Function Function ALU                                               |
| Routing Phase P     | Signal<br>Router<br>FunctionTWL<br>Manhattan<br>FunctionUpdate Cost<br>Of Net<br>FunctionGeneral<br>ALU                  |

used coarse grained structure. We final Considering algorithm, the instructions set is shown in above figure. Double-arrow connector shows resource sharing between instructions which are time isolated. These instructions are extracted manually in terms of functions utilization and profiling of running algorithms in software mod by sim-profile and Dlite! debugger which are commands of Simplescalar simulator tool.

### **Experimental Results on Small Benchmark**

| $\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\$ |
|----------------------------------------------------------------------|
| $\begin{array}{c} 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                |
|                                                                      |

**Circuit Benchmark** 

#### **Code Size Results**

|                                    | Code Size (Byte)    |                               |                          |                               |  |  |
|------------------------------------|---------------------|-------------------------------|--------------------------|-------------------------------|--|--|
| Functions                          | Software<br>Running | Modify<br>Software<br>Running | Fine Grain<br>Inst. ASIP | Coarse<br>Grain<br>Inst. ASIP |  |  |
| Rand_FUN                           | 192                 | 384                           | 272                      | 112                           |  |  |
| Perturb _FUN                       | 488                 | -                             | 376                      | 104                           |  |  |
| THPWL_FUN                          | 960                 | -                             | 560                      | 112                           |  |  |
| Exponent_FUN                       | 376                 | 400                           | 224                      | 120                           |  |  |
| Main<br>T=10:1:0<br>Inner loon-100 | 912                 | 912                           | 912                      | 912                           |  |  |
| 100p-100                           |                     |                               |                          |                               |  |  |

#### **Execution Cycle Results**

|                                    |                     | Execution (                   | Cycle (Clock)            |                                  | 5000000                             |          |                    |            |                 |
|------------------------------------|---------------------|-------------------------------|--------------------------|----------------------------------|-------------------------------------|----------|--------------------|------------|-----------------|
| Functions                          | Software<br>Running | Modify<br>Software<br>Running | Fine Grain<br>Inst. ASIP | Coarse<br>Grain<br>Inst.<br>ASIP | 4500000 -<br>4000000 -<br>3500000 - |          |                    |            |                 |
| Rand_FUN                           | 48                  | 43                            | 29                       | 13                               | 3000000 -                           |          |                    |            |                 |
| Perturb _FUN                       | 60                  | -                             | 46                       | 12                               | 2500000 -                           |          |                    |            |                 |
| THPWL_FUN                          | 3730                | -                             | 1997                     | 247                              | 2000000 -                           |          |                    |            |                 |
| Exponent_FU<br>N                   | 162                 | 39                            | 27                       | 14                               | 1500000 -<br>1000000 -              |          |                    |            | $\overline{\ }$ |
| Main<br>T=10:1:0<br>Inner loop=100 | 4567868<br>Ref      | 4447539<br>1.03X              | 2393903<br>1.9X          | 347609<br>13.1X                  | 500000 -<br>0 -                     | Software | Modified           | Fine Grain | Coars           |
|                                    |                     |                               |                          |                                  |                                     | Running  | Software<br>Runing | Inst. ASIP | Inst            |

#### Main Execution Cycles

| 0000 – |  |
|--------|--|
| 0000 - |  |
| 0000 - |  |
| 0000 - |  |
|        |  |

| 11.         | Old Cost=New Cost;                           |
|-------------|----------------------------------------------|
| <i>12</i> . | Place =New Place;                            |
| <i>13</i> . | Else if (rand (0, 1) $< e^{-Delta Cost/T}$ ) |
| <i>14</i> . | Old Cost=New Cost;                           |
| 15.         | Place =New Place;                            |
| <i>16</i> . | End if;                                      |
| 17.         | End for;                                     |
| 18.         | D=schedule(D); $T=schedule(T);$              |
| <i>19</i> . | End While; }                                 |
|             |                                              |



#### Challenge the future