
Bit-Precise LTL Model Checking

Petr Bauch
Faculty of Informatics, Masaryk University

FMCAD 2014 Student Forum

Abstract

Complete verification of unmodified code is a challenging task, well-motivated by the
costs of software debugging. In this work we rise to the challenge by proposing a model
checking method that operates on unmodified parallel programs, specifically accepting
LLVM bitcode as input. Apart from being complete, our method proves correctness of a
program w.r.t. a temporal specification and is sound w.r.t. arithmetic overflows of integer
variables. To overcome the limitations of classical model checking: state space explosion,
state matching, etc. we further propound to reduce the model checking problem to a
specific instance of the non-termination checking and lift the recently proposed property
directed reachability to compute approximations of recurrent sets.

1 Present State

Our tool accepts LLVM bitcode as the program and an LTL formula as the specification
where the atomic propositions are quantifier free bit-vector formulae over global variables.
Since variable evaluations are also represented as bit-vector formulae, comparing two states
while searching for a fair cycle within the system can be reduced to satisfiability modulo
theories query. The major limitation of the present state arises from this query being
quantified, thus increasing the complexity of individual state comparisons.

1.1 Work Flow

The figure below illustrate how control explicit—data symbolic model checking transforms
the input pair (program P , specification A) to generate the set-reduced transition system
PS. The formulae representing variable evaluations are cumulatively collected along the
paths in both the program and the specification automaton.

thread t0

thread t1

1:%b=alloca i8
2:%b=call i8* @read()

1:%1=load i8* @b
2:%2=icmp sgt i8 %1, 3
3:br i1 %2, label %.loop, ret

4:.loop:
5: %3=load i8* @b
6: %4=add i8 %3, 1
7: store i8 %4, i8* @b
8: br label %.loop

thread t2

program P

1:%1=load i8* @b
2:%2=mul nsw i8 %1, %1
3:%3=icmp slt i8 %2, 17
4:br i1 %3, label %.loop, ret

5:.loop:
6: %3=load i8* @b
7: %4=add i8 %3, 1
8: store i8 %4, i8* @b
9: br label %.loop

automaton A

1

2

b > 10

b > 10

b ≤ 10

d = (b, 0)
s = 1, 0, 0
a = 1

d = (0 ≤ b < 28)
s = 2, 0, 0
a = 1

d = (0 ≤ b < 28∧b > 3∧b < 10)

s = 3, 5, 0

a = 2

d = (0 ≤ b < 28∧b > 3∧b ≥ 10)

s = 3, 5, 0

a = 1

d = (0 ≤ b < 28 ∧ b ≤ 3)

s = 3, 9, 0

a = 1

. . .

. . .

. . .

. . .

set-reduced
transition
system PS

The set-based reduction using bit-vector formulae is not the only output of our tool
SymDivine [1]. We can also generate the state space encoded with BDDs or generate
the control flow graph (supporting other tools with access to parallel programs).

1.2 Experiments
We have evaluated SymDi-
vine on examples translated
from C programs. Apart from
Erik Koskinen’s tool (reduc-
ing model checking to termi-
nation analysis) we also com-
pare with nuXmv (using SMT-
based bounded model check-
ing): two state-of-the-art model
checkers.

Name Property Koskinen nuXmv SymDi

acqrel G(a⇒ F b) 14.18 0.31 28.25
apache G(a⇒ GF b) 197.4 >60 47.50
fig8-2007 G(a⇒ GF b) 27.94 0.25 >60
pgarch G F a 15.20 >60 0.83
win1 G(a⇒ F a) 539.0 7.15 0.62
win3 F G a 15.75 0.04 0.18
1 F G a 11.0 2.43 0.7
12 F(a ∧ ¬G a) 3.9 0.41 0.23

2 Avoid Loop Unrolling: Idea

Apart from expensive state comparison the present approach is also limited by the fact
that program loops may be exhaustively unrolled during verification. A recently proposed
property guided reachability (PDR) [2] avoids unrolling loops while also allowing extensions
for LTL and CTL model checking by proving unreachability among fair states. We propose
an alternative extension via non-termination analysis [3], specifically to lift PDR to compute
approximations of recurrent sets of evaluations pertaining to fair states.

Formalisation

Definition: By Reach(l) we denote the set of evaluations at location l reachable from
the initial location, i.e. ∀x ∈ Reach(l), (l0,x0) (l,x).
Definition: By Recur (l) we denote a set of evaluations, such that ∀x ∈ Recur (l) there
is a path from l to l that performs an identity on x, i.e. (l,x) (l,x).
Definition: Let X be a set of evaluations characterised by Φ, i.e. ∀x,Φ(x)⇔ x ∈ X.
Then by ↑X we denote any over-approximation of X , i.e. ∀x,Φ(x)⇒ x ∈ ↑X . And by
↓X we denote any under-approximation of X , i.e. ∀x,Φ(x)⇐ x ∈ ↓X .

Theorem: For a program P and a specification ϕ let F be the set of fair locations. Then

∃lF ∈ F, ↓Reach(lF) ∩ ↓Recur (lF) 6= ∅ ⇒ P 6|= ϕ
and dually

∀lF ∈ F, ↑Reach(lF) ∩ ↑Recur (lF) = ∅ ⇒ P |= ϕ.

The above theorem leads to a model checking algorithms that iteratively refines the
approximations of Reach(l) and Recur (l) for a fair location l until one of the termination
conditions becomes valid.

3 Avoid Loop Unrolling: Implementation

As the driving force behind such iterative refinement we propose using PDR, lifted according
to the following points:

• refine Recur (l) sets using counter-examples to recurrence (CtR) and Reach(l) sets
using counter-examples to induction;

• localise the refinements to program locations;

• extend the method to the bit-vector theory (similarly as in [4]).

Under-approximation Search for under-approximations (w.r.t. a fair location lF) has
two cooperating stages:

1. standard PDR with P ≡ ¬at lF describing the safe states =⇒ x ∈ Reach(lF)

2. PDR with P ≡ ¬(at lF ∧ x), initial state set to (lF , x), and limited to the strongly
connected component containing lF .

Over-approximation The standard definition of the recurrent set requires quantifier
alternation: Let X,X ′ be the sets of program variables for the current and the next state
and I the input variables. Then G is a recurrent set w.r.t. to the cycle relation R iff

∀X∃X ′∃I, G[X]⇒ R[X,X ′, I] ∧G′[X ′].

It follows that a CtR is any evaluation without either a predecessor or a successor. The
figure below illustrates the search for single-step CtRs.

ĉ

l l′ρ ≡ γ[X] ∧ µ[X,X ′, I]

F l
0 ≡ γ

F l
1 . . .

F l
k−2

F l
k−1

F l′

k−2

F l′

k−1

F l′

k

č @⇓
c

Description The task is to refine F l based on the new F l′, assuming the invariant

∀i < k, ∀X∃X ′∃I, F l
i ⇒ ρ ∧ F l′

i

• initialise F l
k := F l

k−1

• find potential CtR M := sat(F l
k ∧ ρ ∧ (F l′

k−1 ∧ ¬F l′

k)) c, c′ :=M|X,M|X ′

• check c q := sat(c ∧ ρ ∧ F l′

k)

– q = sat

{
ρ[X,X ′, I] ĉ ∧ F l

k−1 ∧ ρ ∧ c′ . . . sat
ρ[X,X ′] ĉ ∧ F l

k−1 ∧ ρ ∧ F l′

k . . . sat
ĉ⇒ ¬c

– q = unsat č ∧ ρ ∧ F l′

k . . . unsat c⇒ č

References

[1] LTL Model Checking of LLVM Bitcode with Symbolic Data P. Bauch, V. Havel,
J. Barnat, To appear in Proc. of MEMICS, 2014

[2] An Incremental Approach to Model Checking Progress Properties A. Bradley,
F. Somenzi, Z. Hassan, Z. Yan, In Proc. of FMCAD, 2011

[3] Proving Non-termination A. Gupta, T. Henzinger, R. Majumdar, A. Rybalchenko, R. Xu,
In Proc. of POPL, 2008

[4] QF BV Model Checking with Property Directed Reachability T. Welp,
A. Kuehlmann, In Proc. of DATE, 2013

