FSL: A Logic for Reasoning about Memory Fences

Marko Doko, Viktor Vafeiadis

Max Planck Institute for Software Systems

1. Strong vs. weak memory

- Memory models describe all possible behaviors resulting from concurrent accesses to shared memory locations.
- Most verification work assumes a strong memory model (i.e. interleaving semantics).
- In practice, hardware behaves weakly (x86-TSO, POWER, ARM, ...).
- The C11 memory model unifies various existing hardware models.

3. Fences in C11

Fences can be used to achieve synchronization:

int a = 0;
atomic_int x = 0;
a = 42;
$$| if(x_{rlx} == 1) \{$$

fence_{rel}; sync fence_{acq};
x_{rlx} = 1; print(a);
 \otimes no races \otimes \otimes always prints 42 \otimes

Other synchronization primitives, such as *release writes* and *acquire reads*, can be implemented using fences.

4. Fenced separation logic (FSL)

- ⇒ Extension of relaxed separation logic (RSL).
- Direct reasoning about release writes and acquire reads.
- Simple inference rules for fences and atomic accesses.
- → Proofs of memory safety and race freedom.

5. Inference rules Atomic allocation: $Q: Val \rightarrow Assn$ **6. Example proof** $Q(v) \stackrel{def}{=} (v = 0 \lor \&a \mapsto 42)$

 $\{Q(v)\}$ atomic $x = v \{W_Q(x) * R_Q(x)\}$

Release fence: $\{P\}$ fence_{rel} $\{\triangle P\}$

Atomic read: $\{R_{\mathcal{Q}}(x)\}$ $t = x_{rlx}$ $\{\nabla \mathcal{Q}(t)\}$ Atomic write: $\{ \triangle Q(v) * W_Q(x) \}$ $x_{rlx} = v$ $\{ W_Q(x) \}$

Acquire fence: $\{\nabla P\}$ fence_{acq} $\{P\}$

int a = 0; $\{\&a \mapsto 0\}$ atomic_int x = 0; $\{\&a \mapsto 0 * \mathsf{W}_{\mathcal{Q}}(x) * \mathsf{R}_{\mathcal{Q}}(x)\}$ $\{\&a \mapsto 0 * \mathsf{W}_{\mathcal{Q}}(x)\} \qquad | |\{\mathsf{R}_{\mathcal{Q}}(x)\}|$ $| | if (x_{rlx} = 1)$ a = 42; $\{\&a\mapsto 42*\mathsf{W}_{\mathcal{Q}}(x)\}$ $\{\nabla(\&a\mapsto 42)\}$ fence_{acq}; fence_{rel}; $\{ \triangle (\&a \mapsto 42) * \mathsf{W}_{\mathcal{Q}}(x) \} |$ $\{\&a \mapsto 42\}$ $x_{rlx} = 1;$ print(a); $\{true\}$ $\{true\}$ $\{true\}$

 $\{true\}$