
NETWORK VERIFICATION:

WHEN CLARKE MEETS CERF

George Varghese

UCLA

(with collaborators from CMU, MSR, Stanford, UCLA)

1

FOR PUBLIC CLOUDS,
PRIVATE CLOUDS,
ENTERPRISE
NETWORKS, ISPs, . . .

TOOLS

Model and Terminology

1.2.*
Accounting

1.8.*
Engineering

1.2.* 1.2.*

• Routers, links, interfaces
• Packets, headers
• Prefix match rules, manually placed Access Control (ACL) rules

1.HTTP | 1.2.3.4

1.2.*, SQL, Drop

Problem with Networks today

3

• Manual Configurations: Managers override default shortest
paths for security, load balancing, and economic reasons

• Data Plane + Control Plane: Vendor-specific knobs in both

• Problem: Manually programming individual routers to
implement global policy leads to cloud failures

S
D

Shortest Path

Manual Traffic “steering knobs”

• Data forwarding/Data Plane:
o Access Control Lists (predicates on headers)

o VLANs (a way to virtualize networks)

o MAC Bridging Rules (ACLs at the Ethernet Level)

• Routing/ Control Plane:
o Communities: equivalence classes on routes via a tag

o Static routes: a manager supplied route

o Local preference: “priority” of a route at this router
regardless of global cost of the route

Managers use all these knobs for isolation, economics

4

B

E

F HG

5

Deny Any C UDP

DNS Services are now
blocked!

POLICY
• Internet and Compute can

communicate
• Internet cannot send to

controllers

Allow Any C
Allow C Any

Why manual reasoning is hard

I

Cluster C

Why automated reasoning is imperative

• Challenges: 2^{100} possible headers to test!

o Scale: devices (1000s), rules (millions), ACL limits (< 700)

o Diversity: 10 different vendors, > 10 types of headers

o Rapid changes (new clusters, policies, attacks)

• Severity: (2012 NANOG Network Operator Survey):

o 35% have 25 tickets per month, take > 1 hour to resolve

o Welsh: vast majority of Google “production failures” due to
“bugs in configuration settings”

o Amazon, GoDaddy, United Airlines: high profile failures

As we migrate to services ($100B public cloud market),
network failure a debilitating cost.

6

Simple questions hard to answer today

o Which packets from A can reach B?

o Is Group X provably isolated from Group Y?

o Is the network causing poor performance

or the server?

o Why is my backbone utilization poor?

7

NEED BOTTOM UP ANALYSIS OF EXISTING SYSTEMS

8

Formal methods have been used to verify (check
all cases) large programs and chips (FMCAD!)

Can we use formal methods across all headers, &
inputs for large clouds?

Approach: Treat Networks as Programs

• Model header as point in header space, routers as

functions on headers, networks as composite functions

9

Packet
Forwarding

0xx1..x1

Match
Action

Send to interface 2
Rewrite with 1x01xx..x1

CAN NOW ASK WHAT THE EQUIVALENT OF ANY PROGRAM
ANALYSIS TOOL IS FOR NETWORKS

P1 P2

Problems addressed/Outline

• Classical verification tools can be used to design
static checkers for networks but do not scale

o Part 1: Scaling via Symmetries and Surgeries (POPL 16)

• Bugs exist in the routing protocols that build
forwarding tales

o Part 2: Control Plane Verification (OSDI 2016)

• A vision for Network Design Automation (NDA)

10

Scaling Network Verification
(Plotkin, Bjorner, Lopes, Rybalchenko, Varghese, POPL 2016)

- exploiting regularities in networks
- symmetries and surgeries

11

Scaling Network Verification
Control Plane Verification

Formal Network Model [HSA 12]
• 1 - Model sets of packets based on relevant header

bits, as subsets of a {0,1, *}L space – the Header Space

• 2 – Define union, intersection on Header Spaces

• 3 – Abstract networking boxes (Cisco routers, Juniper

Firewalls) as transfer functions on sets of headers

• 4– Compute packets that can reach across a path as

composition of Transfer Functions of routers on path

• 5. Find all packets that reach between every pair of

nodes and check against reachability specification

12

All Network boxes modelled as a Transfer Function:

All Packets that A can possibly
send to box 2 through box 1

All Packets that A
can possibly send

Computing Reachability [HSA 12]

Box 1

Box 2

Box 3Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A)) U T3(T4(T1(X,A))

13

All Packets that A can
possibly send to box 4

through box 1

COMPLEXITY DEPENDS ON HEADERS, PATHS, NUMBER OF RULES

Unfortunately, in practice . . .

• Header space equivalencing: 1 query in < 1 sec.
Major improvement over standard verification
tools like SAT solvers and model checkers

• But our data centers: 100,000 hosts, 1 million
rules, 1000s of routers, 100 bits of header

• So N^2 pairs takes 5 days to verify all specs.

14

Exploit Design Regularities to scale?

Can exploit regularities in rules and topology (not headers):
• Reduce fat tree to “thin tree”; verify reachability cheaply in

thin tree.
• How can we make this idea precise?

Symmetry

Logical versus physical symmetry

• (Emerson-Sistla): Symmetry on state space

• (Us): Factor: symmetries on topology, headers
Define symmetry group G on topology

• Theorem: Any reachability formula R for
holds iff R’ holds for quotient network

16

R5

R2R1

R4R3

X

Z

R5

R2R1

R3

X

Z

Transforms to

Y Y

Topological Group Symmetry

REQUIRES PERFECTLY SYMMETRICAL RULES AT R3 & R4.
IN PRACTICE, A FEW RULES ARE DIFFERENT.

R5

R2XR1

R4
R3

X

X XX X

XX

R5

R2XR1

R4
R3

X X

XX

Transform (Redirect
X to R3 only in R1, R2

R5

R2XR1

R4
R3

X

X X

X

Transform (Remove
X Rule in R4

Near-symmetry  rule (not box) surgery

Instead of removing boxes, “squeeze” out redundant rules
iteratively by redirection and removal. How to automate?

1**  *1* 

REWRITE PREFIXES AS UNION OF DISJOINT
SETS EACH OF WHICH GETS AN INTEGER LABEL

L1, L3  L2, L3 

Step 1: Compute header equivalence classes (Yang-
Lam 2013)

1** *1*11*

Efficiently compute labels using a graph
on sets that we call a ddNF, takes linear
time on our datasets

Computing labels in linear time

L1 L2L3

Step 2: compute interface equivalence classes via
Union-Find

For each header equivalence class, find all equivalent interfaces

e ≡ e
x

i ≡ j
x

k ≡ l
x

R5

R2XR1

R4
R3

X

X XX X

XX

i

k l

j

e

Exhaustive verification solutions

• Header equivalence classes: 2100
 4000

• Rule surgery: 820,000 rules  10K rules

• Rule surgery time  few seconds

• Verify all pairs: 131 2 hours

• 65 x improvement with simplest hacks. With 32-
core machine & other surgeries  1 minute goal

22

 Can do periodic rapid checking of network
invariants. Simple version in operational practice

23

Ongoing work

Limitation Research Project

Booleans only (Reachability) Quantitative Verification (QNA)

No incremental way to compute
header equivalence classes

New data structure (ddNFs)
Venn diagram intersection

Data plane only: no verification
of routing computation

Control Space Analysis (second
part of talk)

Correctness faults only (no
performance faults)

Data-plane tester ATPG
(aspects in Microsoft clouds)

Stateless Forwarding Only Work at Berkeley, CMU

Progress in Data Plane Verification

• FlowChecker (UNC 2009): reduces network verification to
model checking. Not scalable

• Anteater (UIUC 2011): reduces to SAT solving. One
counterexample only

• Veriflow (UIUC 2012): Finds all headers using header
equivalence classes

• HSA(Stanford 2012): Header Space Analysis

• Atomic Predicates(UT 2013): Formalizes Header ECs and
provides algorithm to precompute them

• NoD(MSR 2014): Reduces to Datalog, new fused operator

• Surgeries (MSR 2016): Exploits symmetries to scale

24

Topic 2: Control Plane Verification
Fayaz et al, OSDI 2016

25

Data Plane Scaling
Control Plane Verification

But there is also a Control Plane

1.2.*
Accounting

1.2.* 1.2.*

1.2.*

1.2.*

• Data Plane (DP): Collection of forwarding tables and logic that
forward data packets, aka Forwarding

• Control Plane (CP): Program that takes failed links, load into
account to build data plane, aka Routing

Can reach 1.2 in 2 hops

Can reach 1.2 in 1 hop

BGP Routing: Beyond shortest path

• Static Routes take precedence
• Then come local preferences at this router (higher wins)
• Then comes some form of path length
• And more . . .

Route2 (p, . .)Route1 (p, . .)

LP = 120

Route Processing Policy

LP = 80

Static Route
For p

Control versus Data Plane Verification

Program types:

o 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒: 𝐶𝑜𝑛𝑓𝑖𝑔 × 𝐸𝑛𝑣 → 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇𝑎𝑏𝑙𝑒

o 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇𝑎𝑏𝑙𝑒 × 𝐻𝑒𝑎𝑑𝑒𝑟 → 𝐹𝑤𝑑𝑅𝑒𝑠𝑢𝑙𝑡

Data Plane verification for fixed Forwarding Table 𝑓
∀ℎ: 𝐻𝑒𝑎𝑑𝑒𝑟: Φ(ℎ, 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒 𝑓, ℎ)

Control plane verification for configuration 𝑐
∀𝑒, ℎ: Φ(ℎ, 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒(𝑐, 𝑒), ℎ)))

Or
∀𝑒: P((𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒(𝑐, 𝑒))

Errors manifest as Latent Bugs

Core

management
network

M

B1

Data Center
Network

B2Static Route: C via M

C via up C via up

C via up

C via M

Buggy static route causes B1 to propagate wrong
route to C. Works fine till . . .

Specification: ∀𝑒 routing messages received

PropagatedRoute (B1, e) = PropagatedRoute (B2, e)

Symbolic Execution of Route Propagation

• Model BGP Code in Router using C

o Can now do symbolic execution

o Many tools, we used Klee for a prototype

• Can encode symbolic route packets:

• Then propagate routes as in Header Space.

• Encoding routers in Klee, we found . . .

30

Prefix Local Preference AS Path

Using Klee to uncover latent bug

scope a field for
faster verification

KLEE assertion

KLEE finds counterexample: sym_route.prefix = C

Create symbolic
attribute

Progress in Control Plane Validation

• RCC (MIT 2005): static checker for common BGP faults
(mostly syntactical, cannot catch deeper bugs)

• Batfish (MSR, UCLA 2015): computes data plane for 1 BGP
environment (cannot reason across environments)

• ARC (MSR, Wisconsin 2016): For a rich class of BGP
operators, can reason across all failures

• ERA (CMU, MSR, UCLA 2016): Reasons across a subset of
maximal environments to find bugs

• Bagpipe (Washington 2016): Reasons about BGP only and
for a sunset of topologies

• NetKat (Princeton, Cornell 2014): Data plane synthesis

• Propane : (Princeton, MSR, 2016): Control plane synthesis

32

NETWORK DESIGN AUTOMATION?

33

Functional
Description (RTL)

Testbench &
Vectors

Functional
Verification

Logical
Synthesis

Static Timing

Place & Route

Design Rule
Checking (DRC)

Layout vs
Schematic (LVS)

Parasitic
Extraction

Manufacture
& Validate

Specification

Policy
Language

Testing

Verification

Synthesis

Topology Design

Wiring Checkers

Debuggers

Electronic Design Automation
(McKeown SIGCOMM 2012)

Network Design Automation
(NDA)?

Digital Hardware Design as Inspiration
Specification

NDA: Broader Research Agenda

• Bottom up (analysis):

o Run time support (automatic test packets?)

o Debuggers (how to “step” through network?)

o Specification Mining (infer reachability specs?)

• Top Down (synthesis):

o Expressivity (load balancing, security policies?)

o Scalable specifications (network types?)

o New Optimization Problems (stochastic?)

Yawn. We have seen it all years ago!

Verification Exemplar Network Verification Idea

Ternary Simulation,
Symbolic Execution [Dill 01]

Header Space Analysis
[Kazemian 2013]

Certified Development of an
OS Sel4 [Klein 09]

Certified Development of an
SDN Controller [Guha 13]

Specification Mining
[Bodek 02]

Mining for Enterprise Policy
[Benson 09]

Exploit Symmetry in Model
Checking [Sistla 09]

Exploit Symmetry in Data
Centers [Plotkin 16]

Yes, but scale by exploiting domain

Technique Structure exploited

Header Space Analysis Limited negation, no loops,
small equivalence classes

Exploiting Symmetry Symmetries in physical
topology

ATPG (Automatic Test Packet
Generation)

Network graph limits size of
state space compared to KLEE

Netplumber (incremental
network verification)

Simple structure of rule
dependencies

Requires Interdisciplinary work between formal
methods and networking Researchers

Conclusion

• Inflection Point: Rise of services, SDNs

• Intellectual Opportunity: New techniques

• Working chips with billion transistors. Large
networks next?

38

Thanks

• (MSR): N. Bjorner, N. Lopes, R. Mahajan, G.
Plotkin,

• (CMU): S. Fayaz, V. Sekar

• (Stanford): P. Kazemian, N. McKeown

• (UCLA): A. Fogel, T. Millstein

39

