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Model and Terminology

1.2.*
Accounting

1.8.*
Engineering

1.2.* 1.2.*

• Routers, links, interfaces
• Packets, headers
• Prefix match rules, manually placed Access Control (ACL) rules

1.HTTP  |  1.2.3.4

1.2.*, SQL, Drop



Problem with Networks today

3

• Manual Configurations: Managers override default shortest 
paths for security, load balancing, and economic reasons

• Data Plane + Control Plane: Vendor-specific knobs in both

• Problem: Manually programming individual routers to 
implement global policy leads to cloud failures

S
D

Shortest Path



Manual Traffic “steering knobs”

• Data forwarding/Data Plane:
o Access Control Lists (predicates on headers)

o VLANs (a way to virtualize networks)

o MAC Bridging Rules (ACLs at the Ethernet Level)

• Routing/ Control Plane:
o Communities: equivalence classes on routes via a tag

o Static routes: a manager supplied route

o Local preference: “priority” of a route at this router 
regardless of global cost of the route

Managers use all these knobs for isolation, economics
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Deny Any  C  UDP

DNS Services are now 
blocked!

POLICY
• Internet and Compute can 

communicate
• Internet cannot send to 

controllers

Allow Any  C
Allow C  Any

Why manual reasoning is hard

I

Cluster C



Why automated reasoning is imperative

• Challenges: 2^{100} possible headers to test!

o Scale:  devices (1000s), rules (millions), ACL limits (< 700)

o Diversity: 10 different vendors, > 10 types of headers

o Rapid changes (new clusters, policies, attacks)

• Severity: (2012 NANOG Network Operator Survey):

o 35% have 25 tickets per month, take > 1 hour to resolve

o Welsh: vast majority of Google “production failures” due to 
“bugs in configuration settings”

o Amazon, GoDaddy, United Airlines: high profile failures

As we migrate to services ($100B public cloud market), 
network failure a debilitating cost.
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Simple questions hard to answer today

o Which packets from A can reach B?

o Is Group X provably isolated from Group Y?

o Is the network causing poor performance 

or the server?

o Why is my backbone utilization poor?
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NEED BOTTOM UP ANALYSIS OF EXISTING SYSTEMS
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Formal methods have been used to verify (check 
all cases) large programs and chips (FMCAD!)

Can we use formal methods across all headers, &  
inputs for large clouds?



Approach: Treat Networks as Programs

• Model header as point in header space, routers as 

functions on headers, networks as composite functions
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Packet
Forwarding

0xx1..x1

Match
Action

Send to interface 2
Rewrite with 1x01xx..x1

CAN NOW ASK WHAT THE EQUIVALENT OF ANY PROGRAM 
ANALYSIS TOOL IS FOR NETWORKS

P1 P2



Problems addressed/Outline

• Classical verification tools can be used to design 
static checkers for networks but do not scale 

o Part 1: Scaling via  Symmetries and Surgeries (POPL 16)

• Bugs exist in the routing protocols that build 
forwarding tales

o Part 2: Control Plane Verification (OSDI 2016)

• A vision for Network Design Automation (NDA)
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Scaling Network Verification
(Plotkin, Bjorner, Lopes, Rybalchenko, Varghese, POPL 2016)

- exploiting regularities in networks 
- symmetries and surgeries
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Scaling Network Verification
Control Plane Verification



Formal Network Model [HSA 12]
• 1 - Model sets of packets based on relevant header 

bits, as subsets of a {0,1, *}L space – the Header Space

• 2 – Define union, intersection on Header Spaces

• 3 – Abstract networking boxes (Cisco routers, Juniper 

Firewalls) as transfer functions on sets of headers

• 4– Compute packets that can reach across a path as 

composition of Transfer Functions of routers on path

• 5. Find all packets that reach between every pair of 

nodes and check against reachability specification
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All Network boxes modelled as a Transfer Function:



All Packets that A can possibly 
send to box 2 through box 1

All Packets that A 
can possibly send

Computing Reachability [HSA 12]

Box 1

Box 2

Box 3Box 4

A

B

T1(X,A)

T2(T1(X,A))

T4(T1(X,A))

T3(T2(T1(X,A))  U  T3(T4(T1(X,A))
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All Packets that A can
possibly send to box 4

through box 1

COMPLEXITY DEPENDS ON HEADERS, PATHS, NUMBER OF RULES



Unfortunately, in practice . . .

• Header space equivalencing: 1 query in < 1 sec. 
Major improvement over standard verification 
tools like SAT solvers and model checkers

• But our data centers: 100,000 hosts, 1 million 
rules, 1000s of routers, 100 bits of header

• So N^2 pairs takes 5 days to verify all specs.
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Exploit  Design Regularities to scale?

Can exploit regularities in rules and topology (not headers):
• Reduce fat tree to “thin tree”; verify reachability cheaply in 

thin tree.
• How can we make this idea precise?

Symmetry



Logical versus physical symmetry

• (Emerson-Sistla): Symmetry on state space 

• (Us): Factor: symmetries on topology, headers 
Define symmetry group G on topology

• Theorem: Any reachability formula R for  
holds iff R’ holds for quotient network 
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R5

R2R1

R4R3

X

Z

R5

R2R1

R3

X

Z

Transforms to

Y Y

Topological Group Symmetry 

REQUIRES PERFECTLY SYMMETRICAL RULES AT R3 & R4.
IN PRACTICE, A FEW RULES ARE DIFFERENT.



R5

R2XR1

R4
R3

X

X XX X

XX

R5

R2XR1

R4
R3

X X

XX

Transform (Redirect
X to R3 only in R1, R2

R5

R2XR1

R4
R3

X

X X

X

Transform (Remove
X Rule in R4

Near-symmetry  rule (not box) surgery

Instead of removing boxes, “squeeze” out redundant rules 
iteratively  by redirection and removal.  How to automate?



1**  *1* 

REWRITE PREFIXES AS UNION OF DISJOINT
SETS EACH OF WHICH GETS AN INTEGER LABEL

L1, L3  L2, L3 

Step 1:  Compute header equivalence classes (Yang-
Lam 2013)



1** *1*11*

Efficiently compute labels using a graph
on sets that we call a ddNF, takes linear 
time on our datasets

Computing labels in linear time

L1 L2L3



Step 2:  compute interface equivalence classes via 
Union-Find 

For each header equivalence class, find all equivalent interfaces

e ≡ e
x

i ≡ j
x

k ≡ l
x

R5

R2XR1

R4
R3

X

X XX X

XX

i

k l

j

e



Exhaustive verification solutions

• Header equivalence classes: 2100
 4000

• Rule surgery: 820,000 rules  10K rules

• Rule surgery time  few seconds

• Verify all pairs: 131 2 hours 

• 65 x improvement with simplest hacks.  With 32-
core machine & other surgeries  1 minute goal
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 Can do periodic rapid checking of network 
invariants.  Simple version in operational practice
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Ongoing work 

Limitation Research Project

Booleans only (Reachability) Quantitative Verification (QNA)

No incremental way to compute 
header equivalence classes

New data structure (ddNFs) 
Venn diagram intersection 

Data plane only: no verification 
of routing computation

Control Space Analysis (second 
part of talk)

Correctness faults only (no 
performance faults)

Data-plane tester  ATPG 
(aspects in  Microsoft  clouds)

Stateless Forwarding Only               Work at Berkeley, CMU 



Progress in Data Plane Verification

• FlowChecker (UNC 2009): reduces network verification to 
model checking.  Not scalable

• Anteater (UIUC 2011):  reduces to SAT solving.  One 
counterexample only

• Veriflow (UIUC 2012):  Finds all headers using header 
equivalence classes

• HSA(Stanford 2012):  Header Space Analysis

• Atomic Predicates(UT 2013):  Formalizes Header ECs and 
provides algorithm to precompute them

• NoD(MSR 2014): Reduces to Datalog, new fused operator

• Surgeries (MSR 2016): Exploits symmetries to scale
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Topic 2: Control Plane Verification 
Fayaz et al, OSDI 2016
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Data Plane Scaling
Control Plane Verification



But there is also a Control Plane

1.2.*
Accounting

1.2.* 1.2.*

1.2.*

1.2.*

• Data Plane (DP): Collection of forwarding tables and logic that 
forward data packets, aka Forwarding

• Control Plane (CP): Program that takes failed links, load into 
account to build data plane, aka Routing

Can reach 1.2 in 2 hops

Can reach 1.2 in 1 hop



BGP Routing: Beyond shortest path

• Static Routes take precedence
• Then come local preferences at this router (higher wins)
• Then comes some form of path length
• And more . . .

Route2 (p, . .)Route1 (p,  . .)

LP = 120

Route Processing Policy

LP = 80

Static Route
For p



Control versus Data Plane Verification 

Program types:

o 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒: 𝐶𝑜𝑛𝑓𝑖𝑔 × 𝐸𝑛𝑣 → 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇𝑎𝑏𝑙𝑒

o 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒: 𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇𝑎𝑏𝑙𝑒 × 𝐻𝑒𝑎𝑑𝑒𝑟 → 𝐹𝑤𝑑𝑅𝑒𝑠𝑢𝑙𝑡

Data Plane verification for fixed Forwarding Table 𝑓
∀ℎ: 𝐻𝑒𝑎𝑑𝑒𝑟: Φ(ℎ, 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒 𝑓, ℎ )

Control plane verification for configuration 𝑐
∀𝑒, ℎ: Φ(ℎ, 𝐷𝑎𝑡𝑎𝑃𝑙𝑎𝑛𝑒(𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒(𝑐, 𝑒), ℎ)))

Or
∀𝑒: P((𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑃𝑙𝑎𝑛𝑒(𝑐, 𝑒))



Errors manifest as Latent Bugs 

Core

management 
network

M

B1

Data Center 
Network

B2Static Route: C via M

C via up C via up

C via up

C via M

Buggy static route causes B1 to propagate wrong
route to C. Works fine till . . .

Specification: ∀𝑒 routing messages received

PropagatedRoute (B1, e) = PropagatedRoute (B2, e)



Symbolic Execution of Route Propagation

• Model BGP Code in Router using C  

o Can now do symbolic execution 

o Many tools, we used Klee for a prototype

• Can encode symbolic route packets:

• Then propagate routes as in Header Space.

• Encoding routers in Klee, we found . . .
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Prefix  Local Preference  AS Path        . . . . 



Using Klee to uncover latent bug

scope a field for 
faster verification

KLEE assertion

KLEE finds counterexample: sym_route.prefix = C

Create symbolic
attribute



Progress in Control Plane Validation

• RCC (MIT 2005): static checker for common BGP faults 
(mostly syntactical, cannot catch deeper bugs)

• Batfish (MSR, UCLA 2015): computes data plane for 1 BGP 
environment (cannot reason across environments)

• ARC (MSR, Wisconsin 2016):  For a rich class of BGP 
operators, can reason across all failures

• ERA (CMU, MSR, UCLA 2016):  Reasons across a subset of 
maximal environments to find bugs

• Bagpipe (Washington 2016):  Reasons about BGP only and 
for a sunset of topologies

• NetKat (Princeton, Cornell 2014): Data plane synthesis

• Propane : (Princeton, MSR, 2016): Control plane synthesis
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NETWORK DESIGN AUTOMATION?
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Functional 
Description (RTL)

Testbench & 
Vectors

Functional 
Verification

Logical 
Synthesis

Static Timing

Place & Route

Design Rule 
Checking (DRC)

Layout vs 
Schematic (LVS) 

Parasitic 
Extraction

Manufacture
& Validate

Specification

Policy 
Language

Testing

Verification

Synthesis

Topology Design

Wiring Checkers

Debuggers

Electronic Design Automation
(McKeown SIGCOMM 2012) 

Network Design Automation
(NDA)?

Digital Hardware Design as Inspiration
Specification



NDA: Broader Research Agenda

• Bottom up (analysis): 

o Run time support (automatic test packets?)

o Debuggers (how to “step” through network?)

o Specification Mining (infer reachability specs?)

• Top Down (synthesis):

o Expressivity (load balancing, security policies?)

o Scalable specifications (network types?)

o New Optimization Problems (stochastic?) 



Yawn.  We have seen it all years ago!

Verification Exemplar Network Verification Idea

Ternary Simulation, 
Symbolic Execution [Dill 01]

Header Space Analysis
[Kazemian 2013]

Certified Development of an 
OS Sel4 [Klein 09]

Certified Development of an 
SDN Controller [Guha 13]

Specification Mining 
[Bodek 02]

Mining for Enterprise Policy
[Benson 09]

Exploit Symmetry in Model 
Checking [Sistla 09] 

Exploit Symmetry in Data
Centers [Plotkin 16] 



Yes, but scale by exploiting domain 

Technique Structure exploited

Header Space Analysis Limited negation, no loops, 
small equivalence classes

Exploiting Symmetry Symmetries in physical 
topology

ATPG (Automatic Test Packet 
Generation)

Network graph limits size of 
state space compared to KLEE

Netplumber (incremental 
network verification)

Simple structure of rule 
dependencies

Requires Interdisciplinary work between formal 
methods and networking Researchers



Conclusion

• Inflection Point: Rise of services, SDNs 

• Intellectual Opportunity:  New techniques

• Working chips with billion transistors.  Large 
networks next?
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Thanks

• (MSR):  N. Bjorner,  N. Lopes,  R. Mahajan, G. 
Plotkin,

• (CMU): S. Fayaz, V. Sekar

• (Stanford): P. Kazemian, N. McKeown

• (UCLA): A. Fogel, T. Millstein

39


