

Synthesizing Adaptive Test Strategies from Temporal Logic Specifications

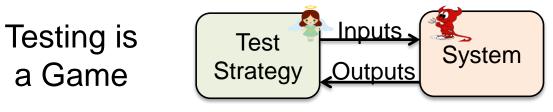
Roderick Bloem, Robert Könighofer, Ingo Pill, Franz Röck Institute of Applied Information Processing and Communications Graz University of Technology, Austria

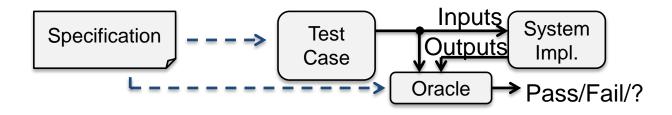
2016-10-04

ΙΙΔΙΚ

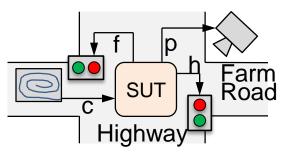
Outline

LIAIK


- Motivation
- Our Approach
- Fault Models
- Experimental Results
- Conclusion

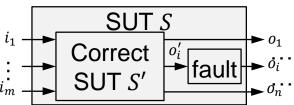


Motivation

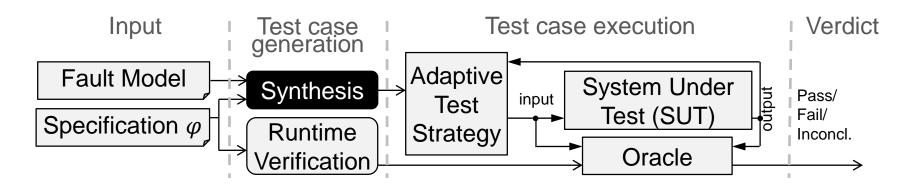


Motivating Example

- 1. The lights must never be green simultaneously.
- 2. If a car is waiting, f eventually turns true.
- **3.** If no car is waiting, h eventually becomes true.
- 4. A picture is taken if a car does a head start.

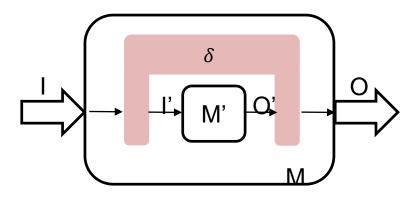

 $\Phi = G(\neg f \lor \neg h) \land G(c \to Ff) \land G(\neg c \to Fh) \land G[(\neg f \land X(c \land f \land X \neg c)) \leftrightarrow XXp]$

"Good" Tests


- **Challenge**: what are *good* test cases?
 - Many coverage metrics have been proposed
- Fault based: Tests should reveal certain faults
 - Assume "almost"-correct system under test (SUT)
 - Simple faults (flip, stuck-at-0, ...) at single outputs
 - Faults can be permanent or transient
 - Tests must cause a specification violation for these faults
 - \rightarrow Tests will also reveal other faults

Goal

- From temporal logic specifications
- Test goals: certain faults must result in specification violation
- Enforces test goals for every implementation using adaptive test strategies



Test Case Generation Approach

Input: I Output: O Output' (not observable): I', O'

ΙΙΑΙΚ

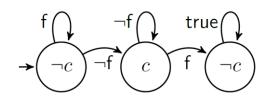
 $\delta(I,I',O,O')$... fault model $\Phi_{corr}(I',O')$... specification of correct system behavior $\Phi_{obs}(I,O)$... observable behavior w. r. t. the specification

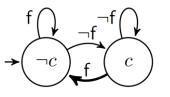
$$(\delta \wedge \Phi_{corr}) \to \neg \Phi_{obs}$$

Fault models

ΙΙΑΙΚ

- Frequency
 - Permanent fault (globally)
 - From some point on permanent (eventually globally)
 -
 - Occurs only once (eventually)
- Fault description
 - Bit flip $(o_i \leftrightarrow \neg o'_i)$
 - Stuck at zero/one ($o_i = 0/1$)
 - Delayed signal $(X(o_i) \leftrightarrow o'_i)$




Motivating Example – Test Strategy

Permanent stuck-at-0 fault of p

Stuck-at-0 fault of p that occurs from some point in time onwards

TABLE I RESULTS FOR THE AMBA BUS ARBITER. THE SUFFIX "K" MULTIPLIES BY 10^3 .

Decide Next Start Access Grant Bus Full Spec Fault frq $|\mathcal{T}|$ sec MB frq $|\mathcal{T}|$ sec MB frq $|\mathcal{T}|$ sec MB frq $|\mathcal{T}|$ sec MB o_i FG GF 4,848 359 147 hmaster0 2 146 2 B _ MB -MB MB G 2 18 150 hgrant0 F 2 F 2 2,082 $\neg o_i)$ Stuck at 0 2,207856 172 GF 4,991 hgrant1 574 2 peak: 131 peak: 138 803 133 GF 2 5,808 hmastlock 133 _ -G G 126 2 FG peak: 230 2 2 2 9,367 2 start peak: Ľ 170 GF locked 736 5,236 689 FG 9,934 decide G 2 FG 2 133 2,388 hmaster0 2 1,237 G 153 F G 2 MB MB MB peak: 130 MB 6,775 GF hgrant0 -G G 171 2 5,681 _ _ -2 2 o; O 2 2 1,917 2 151 F 1,970 at hgrant1 F 19 783 peak: 131 Stuck 115 53 G 2 9,64 G GF 2 3 186 F 1.473 hmastlock peak: GF 129 2 5,934 8 start _ peak: -202 GF locked GF 2 800 2 5,423 decide 1,011 GF 2 4,169 _ _ G 2 22k G 2 54k GF 1,828 hmaster0 MB 2 MB ,. 'o' MB 2 29 F 2 Timeout hgrant0 F 10 6,176 peak: 1,476 38 F hgrant1 F 2 10 22222(> 6 days)472 Flip 3,385 GF hmastlock G 2 G 53k 1,057 2 for first o_i 2 FG 43k peak: G 163 start output) peak: GF 1,525 GF 86 locked 2 £ decide F 3 61

AMBA

ΙΑΙΚ

Door locked with a PIN

TABLE II RESULTS FOR THE DOOR SPECIFICATION.

Fault	O_i	frq	$\mathcal{T} $	sec	MB
stuck-	at-0 doorclosec doorlockec	GF 2 FG	25 29	22,341 2,425	347 285
stuck-	at-1 doorclosed doorlocked	GF FG	45 52	23,290 3.100	1,000 148

Conclusion

ΠΑΙΚ

- Automatic generation of adaptive test strategies from temporal logic specifications
 - Independent from implementation details
 - No complete information necessary
 - Discovers faults that are described in the fault model

Thank you for your attention $\ensuremath{\textcircled{\odot}}$

