Integrating Proxy Theories and Numeric Model Lifting for Floating-Point Arithmetic FMCAD 2016

Jaideep Ramachandran and Thomas Wahl

Northeastern University

Oct 4, 2016

Floating-point basics

Why Floating-Point Arithmetic?

Floating-point (FP) = practical approximation of real numbers

- Finite representation on computers
- Dynamic range
- Speed, implementation in hardware

Floating-point basics

FP arithmetic different from Real arithmetic

IEEE 754 (2008) Standard says:

$$x op_{\mathbb{F}} y = round(x op_{\mathbb{R}} y)$$

Standard describes 5 rounding modes

FP arithmetic different from Real arithmetic

IEEE 754 (2008) Standard says:

$$x \ op_{\mathbb{F}} \ y = round(x \ op_{\mathbb{R}} \ y)$$

Standard describes 5 rounding modes

Examples of formulas satisfiable in FP:

- $x \oplus y = x \wedge y > 0$
- $x \oplus (y \oplus z) > (x \oplus y) \oplus z$
- $x \otimes (y \oplus z) > (x \otimes y \oplus x \otimes z)$

Floating-point reasoning: approaches

- Traditionally: theorem proving, abstract domains
- More recently: decision procedures
 - Examples: Mathsat, z3
 - Big win: witness generation
 - Technique: bit-blasting, bit-vectors
 - Limitation: leads to huge boolean encodings

Floating-point basics

Using Real Arithmetic Solver [POPL13]

Automatic Detection of Floating-Point Exceptions

Earl T. Barr Thanh Vo Vu Le Zhendong Su

Department of Computer Science, University of California at Davis {etbarr, vo, vmle, su}@ucdavis.edu

Floating-point basics

Using Reduced Precision FP [IJCAR14]

Solving FP formula f

- $f' = \text{reduce_precision}(f)$
- while $(f' \neq f)$
- if $\exists \sigma : \sigma \models f'$
- if $\sigma \models f$
- return σ
- else
- increase precision of f'

Example

Consider *f* : Solve instead:

 $(x \oplus y) \oplus z > x \oplus (y \oplus z)$ $(x \oplus_9 y) \oplus_9 z > x \oplus_9 (y \oplus_9 z)$

Floating-point basics

Satisfiable in FP₉ (as any bit-blaster will tell you):

$$x_0 = y_0 = 1.18$$
, $z_0 = 1.97 * 10^{-3}$

Problem: $f(x_0, y_0, z_0) \rightarrow \text{false}!$ What now?

Proxy solution

- Proxy solution gets discarded[IJCAR14] if it does not work as is:
 - effort wasted
- Can we use the proxy solution in some way?

Can the proxy solution be lifted to an actual satisfying solution?

Floating-point basics

Lifting a proxy solution

Solving FP formula f

- $f' = reduce_precision(f)$
- while $(f' \neq f)$
- if $\exists \sigma : \sigma \models f'$
- if $\sigma \models f$
- return σ
- else
- do_something(σ)
- else
- increase precision of f'

Framework: Overview

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic

Proxy theories for floating-point: Conditions

- offer a mapping from FP formulas
- easier to reason about than FP
- offer a mapping to FP models
- gradually refinable back to FP

Proxy theories for floating-point: Candidates

Reduced precision (reduced exponent + mantissa) FP

- "easier"
- map solutions to original precision FP by padding bits
- refine by gradually increasing exponent, mantissa

Real arithmetic

- sometimes easier
- map solutions to FP by rounding
- refine by interpreting some real operators as FP [DATE14]

Numeric Model Lifting

Framework: overview

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic

Numeric Model Lifting

Assumption: proxy theory T delivers satisfying T assignment such that an FP solution is nearby

Idea for lifting proxy soln to FP soln:

- T assgn. gives satisfying Boolean skeleton
- fix constraints where T and FP disagree
- pick small subset Vars(f) to do so, keep others constant

Numeric Model Lifting: Example

$f(x,y) \,::\, x \otimes y \otimes y \otimes y \otimes 2 \,\lor\, x \oplus y \otimes 0$

f' is: (i) univariate, (ii) linear, (iii) conjunctive

Numeric Model Lifting: Summary

- 1. Reduces decision problem (f) to simpler one (f')
- 2. Uses off-the-shelf floating-point SMT solver for f'

Benefits:

- \checkmark propositional structure of f reduced to conjunction
- \checkmark typically, Vars $(f') \subsetneq$ Vars(f)
- ✓ often, degree $\deg(f') < \deg(f)$
- \checkmark Independent of where proxy solution came from

Framework: On Soundness, Termination, Completeness

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic

Experimental Evaluation

< A

ъ

ъ

Experimental Setup

Set I:

- Non-linear benchmarks [FMSD14]
- Ignored casts (single precision), ignored special values
- Benchmarks are satisfiable or status is unknown

Set II:

- False identity non-linear benchmarks, E − Ê > ε
 e.g., (a² ⊖ b²) − (a ⊖ b)(a ⊕ b) > ε
- is of interest in compiler optimization
- single precision

Timeout : 20 min

Experimental evaluation Future Directions

Experimental Evaluation (Set II)

	Molly(RPFPA)			Approx [IJCAR14]		MATHSAT
Problem	It	Lifted?	Time (s)	It	Time (s)	Time (s)
False Identity benchmarks						
23	3	✓	148.6	8	163.7	60.5
24	2	✓	64.6	8	137.9	108.4
25	8	×	162.7	8	137.2	108.4
26	1	✓	0.9	8	137.2	108.2
27	8	×	278.2	8	162.8	47.7
28	1	✓	12.4	8	123.1	51.8
29	4	×	70.2	4	9.8	112.4
30	2	✓	62.6	8	108.5	108.7
31	3	√	144.5	8	172.4	122.5
32	3	✓	157.2	8	то	133.6
33	1	√	1.1	4	0.6	133.6
34	4	√	181.4	8	то	605.4
35	1	√	2.1	8	7.7	596.5
36	1	×	0.1	1	0.1	0.3
37	3	×	0.5	3	0.5	0.3

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic

< A

ъ

3 N 4 3 N

Experimental evaluation Future Directions

Experimental Evaluation (Results)

Set I: total 22, Set II: total 15

		Molly	Approx	Mathsat
Ι	# Solved	14(9)	13	15
	Total Time(s)	3067	1650	6656
	Avg. Time(s)	219	127	443
	# TO	8	9	7
11	# Solved	15(10)	13	15
	Total Time(s)	1287	1161	2237
	Avg. Time(s)	86	89	149
	# TO	0	2	0

Future Directions

- Non-symbolic model lifting
- Numeric solvers for approximate solutions
- \bullet Handling other combinations of proxy \leftrightarrow actual solutions
 - UNSAT \leftrightarrow UNSAT
 - $\bullet \ \mathsf{UNSAT} \leftrightarrow \mathsf{SAT}$
 - SAT \leftrightarrow UNSAT

Thank You!

→ E → < E →</p>

ъ

Backup Slides

イロト イ得ト イヨト イヨト

ж

Experimental Evaluation (Set I)

	Molly(RPFPA)			Approx [IJCAR14]		MATHSAT
Problem	It	Lifted?	Time (s)	It	Time (s)	Time (s)
I. Non-linear benchmarks from [FMSD13]						
1	1	✓	7.8	2	5.0	344.0
2	1	✓	15.8	2	12.3	986.5
3	2	×	60.1	2	45.6	995.9
4	-	-	то	-	то	977.6
5	-	-	то	-	то	983.6
6	-	-	то	-	то	977.1
7	-	-	то	-	то	983.5
8	-	-	то	-	то	то
9	8	×	337.1	8	330.8	то
10	-	-	то	-	то	ТО
11	1	✓	3.2	2	0.3	61.8
12	-	×	680.5	2	0.3	то
13	7	✓	863.3	-	то	то
14	-	-	то	-	то	то
15	-	-	то	-	то	то
16	8	×	484.7	8	116.6	46.7
17	8	×	350.3	8	322.2	47.0
18	2	✓	4.9	6	29.4	46.8
19	2	✓	22.1	3	32.5	47.2
20	1	✓	3.3	2	6.3	46.5
21	2	√	263.4	3	599.9	46.8
22	3	\checkmark	39.1	4	118.8	65.7

Jaideep Ramachandran and Thomas Wahl

Proxy Theories and Model Lifting for Floating-Point Arithmetic

ъ

-

Experimental setup

Instantiation with Real Arithmetic Proxy Theory Set III:

• $E > \widehat{E}$

 $(((a_1 \oplus a_2) \oplus (a_3 \oplus a_4)) \oplus a_5) > ((((a_1 \oplus a_2) \oplus a_3) \oplus a_4) \oplus a_5)$

- (0, 1024.0]
- single precision, RoundToNearestEven
- Offset O is singleton (gradient analysis)

Experimental Evaluation

Set III benchmarks

	Molly				Approx	Mathsat
<i>#Vars</i>	lt	Lifted?	Time (s)	lt	Time (s)	Time (s)
35	6	\checkmark	30.5	15	153	81.6
40	3	\checkmark	11.9	7	34	278.2
45	8	\checkmark	448.6	33	TO	457.1
50	5	\checkmark	25.1	20	344	164.5
55	5	\checkmark	28.3	16	210	754.8
60	3	\checkmark	17.2	34	TO	T0
65	7	\checkmark	42.0	11	88	ТО