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Motivation
Floating-point basics

Why Floating-Point Arithmetic?

Floating-point (FP) = practical approximation of real numbers

e Finite representation on computers
e Dynamic range
e Speed, implementation in hardware
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Motivation
Floating-point basics

FP arithmetic different from Real arithmetic

IEEE 754 (2008) Standard says:

x opp y = round(x opr )

Standard describes 5 rounding modes
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Motivation
Floating-point basics

FP arithmetic different from Real arithmetic

IEEE 754 (2008) Standard says:

x opp y = round(x opr )

Standard describes 5 rounding modes

Examples of formulas satisfiable in FP:
oex®y=xANy>0
ox®(ydz)>(xdy)dz
o xR(ydz)>(xy®x®z)
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Motivation
Floating-point basics

Floating-point reasoning: approaches

e Traditionally: theorem proving, abstract domains
e More recently: decision procedures

o Examples: Mathsat, z3

e Big win:

o Technique: bit-blasting, bit-vectors

o Limitation: leads to huge boolean encodings
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Motivation
Floating-point basics

Using Real Arithmetic Solver [POPL13]

Automatic Detection of Floating-Point Exceptions

Earl T. Barr Thanh Vo VulLe Zhendong Su

Department of Computer Science, University of California at Davis
{etbarr, vo, vmle, su}@ucdavis.edu
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Motivation
Floating-point basics

Using Reduced Precision FP [[JCAR14]

Solving FP formula f
o f' = reduce_precision(f)
o while(f" # f)
o fdo:olf
o ifolEf

° return o
o else
e increase precision of f’
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Consider f: xBy)Pz>xP (yP2)
Solve instead: (x@Doy) Doz >xDy (y Dy 2)

Satisfiable in FPy (as any bit-blaster will tell you):
Xo =Y =118, z,=197 %1073

Problem: f(x,,Vo,2Z,) — false!  What now?

handran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic



Motivation
Floating-point basics

Proxy solution

o Proxy solution gets discarded[IJCAR14] if it does not work
as is:

o effort wasted

Can we use the proxy solution in some way?

Can the proxy solution be lifted to an actual satisfying
solution?
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Motivation
Floating-point basics

Lifting a proxy solution

Solving FP formula f

o f' = reduce precision(f)
o while(f’ # f)

o fdo:opEf

° folE=f

° return o

° else

° do_something(c)

o else

° increase precision of f’
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Architecture

Framework: Overview

Tr
fr := f mapped to T

success

fr = Refine(fr) ”

failure

UNSAT
o

“ 0 1= ModelLift(7, 7, r) |

%a
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Architecture

Proxy theories for floating-point: Conditions

o offer a mapping from FP formulas
e easier to reason about than FP
o offer a mapping to FP models
e gradually refinable back to FP

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic



Architecture

Proxy theories for floating-point: Candidates

Reduced precision (reduced exponent + mantissa) FP
o “easier”
e map solutions to original precision FP by padding bits
e refine by gradually increasing exponent, mantissa

Real arithmetic
e sometimes easier
e map solutions to FP by rounding
o refine by interpreting some real operators as FP [DATE14]
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Architecture

Numeric Model Lifting
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Architecture

Framework: overview

Tr
fr := f mapped to T

success

fr = Refine(fr) ”

failure

UNSAT
o

“ 0 1= ModelLift(7, 7, r) |

%a
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Architecture

Numeric Model Lifting

Assumption: proxy theory T delivers satisfying T assignment
such that an FP solution is nearby

Idea for lifting proxy soln to FP soln:
e T assgn. gives satisfying Boolean skeleton
o fix constraints where T and FP disagree
o pick small subset Vars(f) to do so, keep others constant
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Architecture

Numeric Model Lifting: Example

f,y) " x@yR®yO2VvxdyO0

PR:x*xy2>2Vx+y<0:x=17=142
FnR: TVF=T InFP : FVF=F
»Goal: fix FPassgn.sothat x @y R®y @2 =T

flx) = x@y®yO2 A-(x@y©0)

f"is: (i) univariate, (ii) linear, (iii) conjunctive

handran and Thomas Wahl Proxy Theories and Model Lifting for Floating-Point Arithmetic



Architecture

Numeric Model Lifting: Summary

1. Reduces decision problem (f) to simpler one (f”)
2. Uses off-the-shelf floating-point SMT solver for f'

Benefits:

v propositional structure of f reduced to conjunction
v typically, Vars(f") & Vars(f)

v often, degree deg(f") < deg(f)

v Independent of where proxy solution came from
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Architecture

Framework: On Soundness, Termination, Completeness

Tr
fr := f mapped to T

success

Refine(fr) ‘ ‘

failure

UNSAT
o

“ 0 1= ModelLift(7, 7, r) |

%a
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Experimental evaluation
Future Directions

Experimental Evaluation and Future directions

Experimental Evaluation
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Experimental evaluation

. . " . Future Directions
Experimental Evaluation and Future directions

Experimental Setup

Set I:
o Non-linear benchmarks [FMSD14]
o Ignored casts (single precision), ignored special values
e Benchmarks are satisfiable or status is unknown
Set Il
e False identity non-linear benchmarks, E — E > €
eg., (0 b?)—(aob)(a®b) > ¢
e is of interest in compiler optimization
e single precision
Timeout : 20 min
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Experimental evaluation

. . " . Future Directions
Experimental Evaluation and Future directions

Experimental Evaluation (Set Il)

‘ H ‘MOLLY(R‘PFPA) H APPROX |[IJCAR14] H MATHSAT \
Problem H It ‘ Lifted? ‘ Time (s) H It ‘ Time (s) H Time (s)
False Identity benchmarks
23 3 v 148.6 || 8 163.7 60.5
24 2 v 64.6 | 8 137.9 108.4
25 8 X 162.7 || 8 137.2 108.4
26 1 v 09 | 8 137.2 108.2
27 8 X 2782 || 8 162.8 477
28 1 v 124 || 8 123.1 51.8
29 4 X 70.2 || 4 9.8 112.4
30 2 v 62.6 | 8 108.5 108.7
31 3 v 1445 || 8 172.4 122.5
32 3 v 157.2 || 8 TO 133.6
33 1 v 1.1 4 0.6 133.6
34 4 v 181.4 || 8 TO 605.4
35 1 v 2114 8 v 596.5
36 1 X 01 1 0.1 0.3
37 3 X 051 3 0.5 0.3
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Expe ntal evaluation

. . " . Future Directions
Experimental Evaluation and Future directions

Experimental Evaluation (Results)

Set |: total 22, Set Il: total 15
| [ Molly ]| Approx || Mathsat |

# Solved 14(9) 13 15
 |[Total Time(s) | 3067 || 1650 | 6656
Avg. Time(s) 219 127 443

# T0O 8 9 7

# Solved 15(10) 13 15

| |[ Total Time(s) | 1287 || 1161 2237
Avg. Time(s) 86 89 149

# T0O 0 2 0
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Experimental evaluation

Experimental Evaluation and Future directions (i (P i

Future Directions

e Non-symbolic model lifting

e Numeric solvers for approximate solutions
e Handling other combinations of proxy <+ actual solutions

o UNSAT « UNSAT
o UNSAT « SAT
o SAT <> UNSAT
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Thank You!
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Backup Slides

Jaideep Ramachandran and Thomas Wahl Proxy Theories and Model L



Experimental Evaluation (Set I)

MoLLy(RPFPA) AppPrOX [[JCAR14] || MATHSAT
Problem || It ‘ Lifted? | Time (s) || It ‘ Time (s) Time (s)
I. Non-linear benchmarks from [FMSD13
1 1 v 78 || 2 5.0 344.0
2 1 v 158 || 2 12.3 986.5
3 2 X 60.1 2 45.6 995.9
4 - - TO - TO 977.6
5 - - TO - TO 983.6
6 - - TO TO 977.1
7 - - TO - TO 983.5
8 - - TO - TO TO
9 8 X 3371 || 8 330.8 TO
10 - - TO - TO TO
11 1 v 32| 2 0.3 61.8
12 - X 680.5 || 2 0.3 TO
13 7 v 863.3 || - TO TO
14 - - TO - TO TO
15 - - TO - TO TO
16 8 X 4847 || 8 116.6 46.7
17 8 x 350.3 || 8 322.2 47.0
18 2 v 49 | 6 29.4 46.8
19 2 v 221 || 3 32.5 47.2
20 1 v 33| 2 6.3 46.5
21 2 v 263.4 || 3 599.9 46.8
22 3 v 39.1 4 118.8 65.7

ep Ramachandran and Thomas Wahl

Proxy Theories and Model L

Arithmetic



Experimental setup

Instantiation with Real Arithmetic Proxy Theory
Set Ill:

o E > E
((a1@a)®(as®a))Bas) > (a1 @ a2) Bas)Bas) B as)
o (0, 1024.0]

e single precision, RoundToNearestEven
o Offset O is singleton (gradient analysis)
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Experimental Evaluation

Set Il benchmarks

| | Molly | Approx || Mathsat |

| #Vars || It | Lifted? | Time (s) || It | Time (s) || Time (s) |
35 6 v 30.5 || 15 153 81.6
40 3 v 119 7 34 278.2
45 8 v 448.6 | 33 TO 457.1
50 5 v 25.1 || 20 344 164.5
55 5 v 28.3 || 16 210 754.8
60 3 v 17.2 || 34 TO TO
65 7 v 42.0 || 11 88 TO

handran and Thom:

as Wahl

Proxy Theories and Model Lifting for Floating-Point Arithmetic




	Motivation
	Floating-point basics

	Architecture
	Experimental Evaluation and Future directions
	Experimental evaluation
	Future Directions


