Accurate ICP-based Floating-Point Reasoning

Albert-Ludwigs-Universität Freiburg

Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino Teige, Tom Bienmüller, Detlef Fehrer, Bernd Becker Chair of Computer Architecture

FMCAD 2016

Context of this Work

Cooperation with Industrypartners (AVACS Transfer Project 1): "Accurate Dead Code Detection in Embedded C Code by Arithmetic Constraint Solving"

University of Oldenburg: Ahmed Mahdi Martin Fränzle

University of Freiburg: Felix Neubauer Karsten Scheibler Bernd Becker BTC-ES (Oldenburg): Tino Teige Tom Bienmüller

SICK (Waldkirch): Detlef Fehrer BURG

Context of this Work (2)

Context of this Work (3)

FMCAD 2016

BURG

Context of this Work (4)

How does iSAT3 Work

iSAT3 = CDCL + ICP

CDCL: conflict-driven clause learning ICP: interval constaint propagation

CDCL(1)

$$CNF$$

$$(\neg b \lor \neg h_1) \land$$

$$(c \lor \neg h_1) \land$$

$$(b \lor \neg c \lor h_1) \land$$

$$(a \lor h_1 \lor \neg h_2) \land$$

$$(a \lor \neg h_1 \lor h_2) \land$$

$$(\neg a \lor h_1 \lor h_2) \land$$

$$(\neg a \lor \neg h_1 \lor \neg h_2) \land$$

$$(h_2)$$

CDCL(1)

CNF

$$(\neg b \lor \neg h_1) \land$$

 $(c \lor \neg h_1) \land$
 $(b \lor \neg c \lor h_1) \land$
 $(a \lor h_1 \lor \neg h_2) \land$
 $(a \lor \neg h_1 \lor h_2) \land$
 $(\neg a \lor h_1 \lor h_2) \land$
 $(\neg a \lor \neg h_1 \lor \neg h_2) \land$
 (h_2)

CDCL(3)

CDCL(4)

CDCL(4)

CDCL(4)

CDCL(5)

CDCL(5)

BURG

CDCL(5)

 (h_{2})

iSAT3 (1)

$$\begin{array}{l} \mathsf{PC} + \mathsf{MAP} + \mathsf{CNF} \\ (h_1 = y^2) \land \\ (h_2 = x + h_1) \land \\ (h_3 \Leftrightarrow (h_2 < 5)) \land \\ (a \lor h_3 \lor \neg h_4) \land \\ (a \lor \neg h_3 \lor h_4) \land \\ (\neg a \lor h_3 \lor h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (h_4) \end{array}$$

iSAT3 (1)

- maintain interval for every real- or integer-valued variable
- PC: primitive constraints: $(h_1 = y^2)$, $(h_2 = x + h_1)$
- MAP: map literals to simple bounds: $(h_3 \Leftrightarrow (h_2 < 5))$

iSAT3 (1)

PC +		Assignment		
$(h_1 = 1)$	Variable	Туре	Value	
$(h_2 =)$	а	bool	false	hula
$(h_3 \Leftrightarrow$	X	real		(5))
$(a \vee h)$	У	real		< 3))
(<i>a</i> ∨¬	h ₁	real		al arithmetic
(<i>¬a</i> ∨	h_2	real	h ₃	functions
(<i>¬a</i> ∨	h ₃	bool	true	
(<i>h</i> ₄)		simple bound		
une e ivet		(<i>h</i> ₂ < 5)		abla
	h_4	bool	true	able
• PC: p				

• MAP: map literals to simple bounds: $(h_3 \Leftrightarrow (h_2 < 5))$

$$\begin{array}{l} \mathsf{PC} + \mathsf{MAP} + \mathsf{CNF} \\ (h_1 = y^2) \land \\ (h_2 = x + h_1) \land \\ (h_3 \Leftrightarrow (h_2 < 5)) \land \\ (a \lor h_3 \lor \neg h_4) \land \\ (a \lor \neg h_3 \lor h_4) \land \\ (\neg a \lor h_3 \lor h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (h_4) \end{array}$$

iSAT3 (3)

$$\begin{array}{l} \mathsf{PC} + \mathsf{MAP} + \mathsf{CNF} \\ (h_1 = y^2) \land \\ (h_2 = x + h_1) \land \\ (h_3 \Leftrightarrow (h_2 < 5)) \land \\ (a \lor h_3 \lor \neg h_4) \land \\ (a \lor \neg h_3 \lor h_4) \land \\ (\neg a \lor h_3 \lor h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (\neg a \lor \neg h_3 \lor \neg h_4) \land \\ (h_4) \end{array}$$

iSAT3 (4)

iSAT3 (5)

	SAT	iSAT3
Deductions	 BCP for clauses 	 BCP for clauses
		evaluate simple bound
		literals
		→ implication clauses
		ICP for PC
		→ arithmetic clauses
Decisions	 decide literals 	 decide literals
		 generate new simple
		bound literals
		and decide them
Conflict Analyses	 traverse implication 	 traverse implication
	graph (1UIP)	graph (1UIP)
	→ conflict clauses	→ conflict clauses

	SAT	iSAT3
Deductions	 BCP for clauses 	 BCP for clauses
		evaluate simple bound
		literals
		→ implication clauses
		ICP for PC
		→ arithmetic clauses
Decisions	 decide literals 	 decide literals
		 generate new simple
		bound literals
		and decide them
Conflict Analyses	 traverse implication 	 traverse implication
	graph (1UIP)	graph (1UIP)
	→ conflict clauses	→ conflict clauses

iSAT3 (7)

Implication Clauses:

- unassigned simple bound literals are evaluated lazily
- therefore implications possible: $(h_2 < 5) \Rightarrow (h_2 < 7)$

Arithmetic Clauses:

- result of interval constraint propagation (ICP)
- e.g. $h_2 = x + h_1$: $((x \le 3) \land (h_1 < 2)) \Rightarrow (h_2 < 5)$
- redirect, e.g. $x = h_2 h_1$: $((h_2 < 10) \land (h_1 \ge 1)) \Rightarrow (x < 9)$
- using floating-point numbers for interval bounds
- always round outwards for safe enclosing intervals
- generate new simple bound literals

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains			
CDCL(T)	iSAT3		
combinations of truth values	interval bounds of theory		
of the theory atoms	variables and sub-expressions		

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains					
CDCL(T)		iSAT3			
combinations of truth values		interval bounds of theory			
of the the	ory atoms	variables and sub-ex-	ssions		
iSAT3 is t algorithm. tion has sin iSAT algorithm: Abstract CDCL:	iSAT3 is the 3rd implementation of the iSAT algorithm. Abstract CDCL with interval abstrac- tion has similarities to the iSAT algorithm ISAT algorithm: "Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure", JSAT 2007 Abstract CDCL: "Deciding Floating-Point Logic with Systematic Abstraction", EMCAD 2012				

iSAT3 = CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains			
CDCL(T)	iSAT3		
combinations of truth values	interval bounds of theory		
of the theory atoms	variables and sub-expressions		

new arithmetic operations ~> add ICP-contractors

need to adapt Boolean abstraction for floating-point

Accurate Reasoning for Floating-Point Arithmetic

IEEE-754 Specification (float, 32 bits)

$Bitpos \to$	31	30 23	22 0
	sign	exponent	fraction / mantissa

- 1 normal numbers:
 - mantissa bitpos 23 assumed to be 1
 - exponent 1 \rightarrow -126 ... 254 \rightarrow +127
 - sign 0 → positive 1 → negative
- 2 special numbers:
 - signed zeros (-0, +0)
 - -∞, +∞ (-inf, +inf)
 - subnormal numbers (leading zeros in mantissa)
 - not a number (NaN)
- rounding modes (up, down, nearest)

UNI FREIBURG

32 bit floating-point values and their ordering

32 bit floating-point values and their ordering

REIBURG

32 bit floating-point values and their ordering

BURG
simple bound ordering:

 $-inf < -0x1.ffffep+127 < \dots$

- \ldots < -0x0.000002p-126 < -0 < +0 < +0x0.000002p-126 < \ldots
- \ldots < +0x1.ffffep+127 < +inf
- no strict bounds needed: reals: $(x \le 5) \Leftrightarrow \neg(x > 5)$ floating-point: $(x \le -0x0.000002p-126) \Leftrightarrow \neg(x \ge -0)$
- floating-point comparison operators and signed zeros:

■
$$(x \le 0) \rightsquigarrow (x \le +0)$$

■ $(x \ge 0) \rightsquigarrow (x \ge -0)$
■ $(x == 0) \rightsquigarrow (x \ge -0) \land (x \le +0)$

BUR

32 bit floating-point values and their ordering

REIBURG

32 bit floating-point values and their ordering

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
    printf("%1.2f\n", a);
    if (a < 0) printf("if\n");</pre>
    else printf("else\n");
    if (a \ge 0) printf("if\n");
    else printf("else\n");
    return (0);
    }
```

-nan else

else

FMCAD 2016

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
   printf("%1.2f\n", a);
    if (a <= 0) printf("if\n");</pre>
    else printf("else\n");
    if (a > 0) printf("if\n");
    else printf("else\n");
   return (0);
    }
```

-nan else

else

FMCAD 2016

UNI FREIBURG

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
   printf("%1.2f\n", a);
    if (a == 0) printf("if\n");
    else printf("else\n");
    if (a != 0) printf("if\n");
    else printf("else\n");
   return (0);
    }
```

-nan

else

if

	SAT	iSAT3
Deductions	 BCP for clauses 	 BCP for clauses
		evaluate simple bound
		literals
		→ implication clauses
		ICP for PC
		→ arithmetic clauses
Decisions	 decide literals 	decide literals
		 generate new simple
		bound literals
		and decide them
Conflict Analyses	 traverse implication 	 traverse implication
	graph (1UIP)	graph (1UIP)
	\rightsquigarrow conflict clauses	→ conflict clauses

NaN incomparable against all other values: $(x \sim NaN), \sim \in \{<, \leq, =, \geq, >\}$ is always false

adapt Boolean encoding: special literal x_{NaN}

x _{NaN}	x is NaN
$\neg x_{NaN}$	x is determined by simple bound literals
	$(x \leq -inf) \dots (x \leq -0) \dots$

Accurate Reasoning for FP (5)

- implication clauses: $(-x + y + x) + (x < 5) \rightarrow (x + 5)$
 - $(\neg x_{NaN} \land (x \leq 5)) \Rightarrow (x \leq 7)$
- arithmetic clauses: h = x + y $(\neg x_{NaN} \land \neg y_{NaN} \land \neg h_{NaN} \land (x \le 3) \land (y \le 2)) \Rightarrow (h \le 5)$
- not shown here, but x_{NaN} also relevant during Tseitin-like transformation
- besides <, ≤, =, ≥, > operators, further operator to mimic behaviour of assignments: x = y vs. x == y

New ICP-Contractors for +, -, *, / (round-to-nearest):

- NaN cases: handled outside with separate clauses
- 2 forward deduction: execute operation with round-to-nearest
- Backward deduction: only redirecting the primitive constraint is not enough

New ICP-Contractors for +, -, *, / (round-to-nearest):

- NaN cases: handled outside with separate clauses
- 2 forward deduction: execute operation with round-to-nearest
- Backward deduction: only redirecting the primitive constraint is not enough

ICP-contractors called when NaN-literals of operands false (otherwise the created arithmetic clauses not unit)

Accurate Reasoning for FP (6)

Separate clauses for primitive constraint (h = x + y):

x or y is NaN

x and y are infinities with opposite signs

x and y are not NaN and x is never -inf or +inf x and y are not NaN and y is never -inf or +inf

x and y are not NaN and x and y are never -inf x and y are not NaN and x and y are never +inf

$$(\neg x_{NaN} \lor h_{NaN}) \land (\neg y_{NaN} \lor h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor \neg (x \le -inf) \lor \neg (y \ge +inf) \lor h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor \neg (x \ge -inf) \lor \neg (y \le -inf) \lor h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor (x \le -inf) \lor (x \ge +inf) \lor \neg h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor (y \le -inf) \lor (y \ge +inf) \lor \neg h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor (x \le -inf) \lor (y \le -inf) \lor \neg h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor (x \ge +inf) \lor (y \ge +inf) \lor \neg h_{NaN}) \land (x_{NaN} \lor y_{NaN} \lor (x \ge +inf) \lor (y \ge +inf) \lor \neg h_{NaN})$$

- \Rightarrow h is NaN
- h is NaN \Rightarrow
- \Rightarrow h is not NaN
 - \Rightarrow h is not NaN
- \Rightarrow h is not NaN
- \Rightarrow h is not NaN

2 Forward deduction primitive constraint (h = x + y):

```
h \in [-\inf, +\inf],

x \in [0x1.1p+100, 0x1.1p+100],

y \in [-0x1.1p+11, -0x1.1p+10]
```

 $h_{lb} = x_{lb} + y_{lb} = 0x1.1p+100 + -0x1.1p+11=0x1.1p+100$ $h_{ub} = x_{ub} + y_{ub} = 0x1.1p+100 + -0x1.1p+10=0x1.1p+100$

apply operation with round-to-nearest

Backward deduction primitive constraint (h = x + y):

 $h \in [0x1.1p+100, 0x1.1p+100], x \in [0x1.1p+100, 0x1.1p+100], y \in [-0x1.1p+11, -0x1.1p+10]$

$$y_{lb} = h_{lb} - x_{ub} = 0x1.1p+100 - 0x1.1p+100 = 0$$

 $y_{ub} = h_{ub} - x_{lb} = 0x1.1p+100 - 0x1.1p+100 = 0$

 $[-0x1.1p+11, -0x1.1p+10] \cap [0,0] = \emptyset$ simply redirecting and rounding outward is **WRONG!** Backward deduction primitive constraint (h = x + y):

 $h \in [0x1.1p+100, 0x1.1p+100], x \in [0x1.1p+100, 0x1.1p+100], y \in [-0x1.1p+11, -0x1.1p+10]$

$$y_{lb} = h_{lb} - x_{ub} = prev(0x1.1p+100) - next(0x1.1p+100)$$

= 0x1.0ffffep+100 - 0x1.100002p+100
= -0x1.000000p+78
$$y_{ub} = h_{ub} - x_{lb} = next(0x1.1p+100) - prev(0x1.1p+100)$$

= 0x1.100002p+100 - 0x1.0ffffep+100

= 0x1.000000p+78

Accurate Reasoning for FP Summarized

- floating-point arithmetic contains special values
- ordering possible, except NaN
- unordered NaN ~> adapted Boolean encoding
 - implication clauses
 - arithmetic clauses
- new ICP-contractors for floating-point operations
 - NaN-cases handled with BCP
 - outward rounding not enough in backward deduction

ICP-Contractors for Bitwise Integer Operations

UNI FREIBURG

- operating on intervals
- a bit-pattern can be interpreted as signed or unsigned

	00010001	10000001
signed char	17	-127
unsigned char	17	129

- need to know bitwidth and signedness of each operation
- s_NOT(*arg*,*bitwidth*), U_NOT(*arg*,*bitwidth*)
- s_and(arg1,arg2,bitwidth), u_and(arg1,arg2,bitwidth)
- s_or(*arg*1,*arg*2,*bitwidth*), u_or(*arg*1,*arg*2,*bitwidth*)
- s_xors(arg1, arg2, bitwidth), u_xors(arg1, arg2, bitwidth)
- s_cast(arg,bitwidth), u_cast(arg,bitwidth)

■
$$(h = x + y), x \in [1,7], y \in [1,8]$$
:
 $h_{lb} = x_{lb} + y_{lb} = 1 + 1 = 2$
 $h_{ub} = x_{ub} + y_{ub} = 7 + 8 = 15$
 $\sim \Rightarrow$ operating on bounds **OK**

■
$$(h = \bigcup_{AND}(x, y, 8)), x \in [1, 7], y \in [1, 8]:$$

 $h_{lb} = x_{lb} \& y_{lb} = 1 \& 1 = 1$ (1 & 2 = 0)
 $h_{ub} = x_{ub} \& y_{ub} = 7 \& 8 = 0$ (7 & 7 = 7)
 \rightsquigarrow operating on bounds **WRONG**

ICP-Contractors for Bitwise Operations (3)

ZW use addition, subtraction, minimum and maximum to get safe overapproximations of the lower and upper bounds. e.g. $(h = \cup AND(x, y, 8)), x \in [1, 7], y \in [1, 8]$: $h_{\mu\nu} = min(x_{\mu\nu}, y_{\mu\nu}) = min(7,8) = 7$ 2 exploit common bit-prefixes, e.g. $(h = \cup AND(x, y, 8)), x \in [18, 30], y \in [89, 92]$: 18 = 00010010 XIh = = 30 = 00011110X_{IIb} 0001 common bit-prefix for values in x = 0101100189 Vih = 92 01011100 Vub = 01011 common bit-prefix for values in v hih 00010000 & 01011000 = 00010000 = 16trailing bits are 0 00011111 & 01011111 = 00011111 = 31 hub trailing bits are 1

IBUR

ICP-Contractors for Bitwise Operations (3)

use addition, subtraction, minimum and maximum to get safe overapproximations of the lower and upper bounds, e.g. (*h* = ∪_AND(*x*,*y*,8)), *x* ∈ [1,7], *y* ∈ [1,8]:

A detailed description of all operations can be found in AVACS Technical Report 116: *"Extending iSAT3 with ICP-Contractors for Bitwise Integer Operations"*

-17		- 017				
Уlb	=	09	=	01011001		
У _{иb}	=	92	=	01011100		
				01011	common bit-prefix fo	r values in <i>y</i>
h _{lb}	=	000	100	00 & 0101 1000	= 00010000 = 16	trailing bits are 0
h _{ub}	=	000	111	11 & 0101 1111	= 00011111 = 31	trailing bits are 1

22

Optimizations

FMCAD 2016

Karsten Scheibler - Accurate ICP-based FP Reasoning

Intermediate Point-Splits

- decomposition into PCs might lead to coarser intervals, e.g. $((x+y)-x \le 7) \rightsquigarrow (h_1 = x+y) \land (h_2 = h_1 - x)$ $x, y \in [0, 10] : h_1 \in [0, 20], h_2 \in [-10, 30] \supset [0, 10]$
- tighter intervals if x is point interval
- change decision heuristic, every k-th interval split will assign a point interval (k = 4)
- might help to find a solution, BUT: detrimental for conflict clauses

 $\ldots \ \land \ (a \rightarrow (i_1 - i_2 = 0)) \ \land \ (i_1 \neq \texttt{s_cast}(\texttt{ite}(b, i_2, 0), 32)) \land \ldots$

$$\begin{array}{ll} \dots & \land & (a \rightarrow (i_1 - i_2 = 0)) & \land & (i_1 \neq \texttt{S_CAST}(\texttt{ITE}(b, i_2, 0), 32)) \land \dots \\ \textbf{with } a = 1: & & \\ \dots & \land & (i_1 - i_2 = 0) & & \land & (i_1 \neq \texttt{S_CAST}(\texttt{ITE}(b, i_2, 0), 32)) \land \dots \\ \dots & & \land & (i_1 = i_2) & & \land & (i_1 \neq \texttt{S_CAST}(\texttt{ITE}(b, i_2, 0), 32)) \land \dots \\ \dots & & \land & (i_1 \neq \texttt{S_CAST}(\texttt{ITE}(b, i_1, 0), 32)) \land \dots \\ \dots & & \land & (i_1 \neq \texttt{S_CAST}(\texttt{ITE}(b, i_1, 0), 32)) \land \dots \end{array}$$

. . .

$$\begin{array}{ll} \dots & \wedge (a \rightarrow (i_1 - i_2 = 0)) & \wedge (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \wedge \dots \\ \text{with } a = 1: \\ \dots & \wedge (i_1 - i_2 = 0) & \wedge (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \wedge \dots \\ \dots & \wedge (i_1 = i_2) & \wedge (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \wedge \dots \\ \dots & \wedge (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_1, 0), 32)) \wedge \dots \\ \dots & \wedge (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_1, 0), 32)) \wedge \dots \\ \text{with } b = 1: \\ \dots & \wedge (i_1 \neq \texttt{s_CAST}(i_1, 32)) \wedge \dots \\ \text{with } i_1 \in [0, 2^{31} - 1]: \\ \dots & \wedge (i_1 \neq i_1) \wedge \dots \end{array}$$

...
$$\land$$
 $(a \rightarrow (i_1 - i_2 = 0))$ \land $(i_1 \neq s_cast(ite(b, i_2, 0), 32)) \land ...$
with $a = 1$:

$$\begin{array}{ll} \dots & \land (i_1 - i_2 = 0) \\ \dots & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \land \dots \\ \land & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \land \dots \\ \ddots & \land & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_1, 0), 32)) \land \dots \end{array}$$

with *b* = 1:

 \land ($i_1 \neq$ s_cast(i_1 , 32)) $\land \ldots$

with $i_1 \in [0, 2^{31} - 1]$:

$$\land (i_1 \neq i_1) \land \ldots$$

but this symbolic dependency is not visible for ICP

$$(h_1 = i_1 - i_2) \land$$

 $(h_2 = ITE(b, i_2, 0)) \land$ just looking at these
 $(h_3 = s_sCAST(h_2, 32)) \land$ primitive constraints
 $(h_4 = i_1 - h_3)$

...
$$\land$$
 $(a \rightarrow (i_1 - i_2 = 0)) \land (i_1 \neq s_cast(ite(b, i_2, 0), 32)) \land ...$
with $a = 1$:

$$\begin{array}{ll} \dots \land (i_1 - i_2 = 0) & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \land \dots \\ \dots \land (i_1 = i_2) & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_2, 0), 32)) \land \dots \\ \dots & \land (i_1 \neq \texttt{s_CAST}(\mathsf{ITE}(b, i_1, 0), 32)) \land \dots \end{array}$$

with *b* = 1:

 \land ($i_1 \neq$ s_cast(i_1 , 32)) $\land \ldots$

with $i_1 \in [0, 2^{31} - 1]$:

 \wedge ($i_1 \neq i_1$) $\wedge \ldots$

but this symbolic dependency is not visible for ICP

ICP with smallest possible bound improvement for i_1 :

$$\rightsquigarrow [1, 2^{31} - 1] \rightsquigarrow [2, 2^{31} - 1] \rightsquigarrow [2, 2^{31} - 2] \rightsquigarrow \dots$$

- ICP with smallest possible bound improvement for i_1 : $\rightarrow [1, 2^{31} - 1] \rightarrow [2, 2^{31} - 1] \rightarrow [2, 2^{31} - 2] \rightarrow \dots$
 - more than 64 deductions per variable per decision level:
 - 1 no further deductions for this variable
 - 2 analyze implication graph, collect involved primitive constraints (the 4 PCs from previous slide)
- analyze primitive constraints semi-symbolically
- conflicting clause which spans more than one PC, e.g. $(b \land (h_1 \ge 0) \land (h_1 \le 0) \land (i_2 \ge 0) \land (i_2 \le 2^{31} - 1)) \Rightarrow (h_4 \le 0)$

Results

FMCAD 2016

Karsten Scheibler - Accurate ICP-based FP Reasoning

61 / 67

- 213 pure floating-point benchmarks from the FP-ACDCL paper
- Comparison between FP-ACDCL (ICP-based), Mathsat (bit-blasting) and iSAT3 (ICP-based)
- Timeout: 900 seconds, Memout: 2 GB

Solver	S+U	SAT	UNSAT	TO	MO
FP-ACDCL	173	97	76	40	0
Mathsat 5.3.11	182	101	81	23	8
iSAT3	164	90	74	47	2
iSAT3 + psplits	186	111	75	27	0
iSAT3 + psplits + gicp	193	111	82	20	0

Results (1)

- 8778 BMC benchmarks generated by BTC toolchain, containing floating-point and bitwise integer operations
- Comparison between CBMC (bit-blasting, k-induction) and iSAT3 (ICP-based, Craig interpolation) both with on-the-fly translation from SMI to their input language
 - Timeout: 60 seconds

Solver	S+U	SAT	U51	U∞	TO
SMI-CBMC	8099	7424	44	631	679
SMI-iSAT3	7647	6671	153	823	1131
SMI-iSAT3 + psplits	8169	7192	156	821	609
SMI-iSAT3 + psplits + gicp	8430	7427	172	831	348

Conclusion

- dead-code detection in C programs = accurate floating-point reasoning + bitwise integer operations
- ISAT3: first non-bit-blasting SMT solver supporting the full range of basic data types and operations in C programs
- promising results:
 - outperforms bit-blasting solvers (MathSAT, CBMC)
 - outperforms other ICP-based solver (FP-ACDCL)
- Outlook: also integrate ICP-contractors for floating-point sine, cosine