Accurate ICP-based Floating-Point Reasoning

Karsten Scheibler, Felix Neubauer, Ahmed Mahdi, Martin Fränzle, Tino Teige, Tom Bienmüller, Detlef Fehrer, Bernd Becker
Chair of Computer Architecture
FMCAD 2016

Context of this Work

Context of this Work (1)

Cooperation with Industrypartners (AVACS Transfer Project 1):
"Accurate Dead Code Detection in Embedded C Code by Arithmetic Constraint Solving"

University of Oldenburg:
Ahmed Mahdi
Martin Fränzle

University of Freiburg:
Felix Neubauer
Karsten Scheibler
Bernd Becker

BTC-ES (Oldenburg):
Tino Teige
Tom Bienmüller

SICK (Waldkirch):
Detlef Fehrer

Context of this Work (2)

Context of this Work (3)

Context of this Work (4)

How does iSAT3 Work

iSAT3 $=$ CDCL + ICP

CDCL: conflict-driven clause learning ICP: interval constaint propagation

CDCL (1)

CNF

$$
\left(\neg b \vee \neg h_{1}\right) \wedge
$$

$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
(h_{2})

CDCL (1)

CNF		
$\left(\neg b \vee \neg h_{1}\right) \wedge$		
$\left(c \vee \neg h_{1}\right) \wedge$	Tseitin-	
$\left(b \vee \neg c \vee h_{1}\right) \wedge$	Transformation	Boolean Formula
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$	$(a \oplus(\neg b \wedge c))$	
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$	$\left(h_{1} \Leftrightarrow(\neg b \wedge c)\right)$	$\left(h_{2} \Leftrightarrow\left(a \oplus h_{1}\right)\right)$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$		
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$		
$\left(h_{2}\right)$		

CDCL (2)

CNF

$$
\left(\neg b \vee \neg h_{1}\right) \wedge
$$

$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg \mathbf{a} \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
$\left(h_{2}\right)$

CDCL (3)

$\|$CNF $\left(\neg b \vee \neg h_{1}\right) \wedge$ $\left(c \vee \neg h_{1}\right) \wedge$ $\left(b \vee \neg c \vee h_{1}\right) \wedge$ $\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$ $\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$ $\left(h_{2}\right)$

CDCL (4)

$\|$CNF $\left(\neg b \vee \neg h_{1}\right) \wedge$ $\left(c \vee \neg h_{1}\right) \wedge$ $\left(b \vee \neg c \vee h_{1}\right) \wedge$ $\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$ $\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$ $\left(h_{2}\right)$

CDCL (4)

$\|$CNF $\left(\neg b \vee \neg h_{1}\right) \wedge$ $\left(c \vee \neg h_{1}\right) \wedge$ $\left(b \vee \neg c \vee h_{1}\right) \wedge$ $\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$ $\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$ $\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$ $\left(h_{2}\right)$

Decision

CDCL (4)

CNF
$\left(\neg b \vee \neg h_{1}\right) \wedge$
$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
$\left(h_{2}\right)$

CDCL (5)

CNF
$\left(\neg b \vee \neg h_{1}\right) \wedge$
$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
$\left(h_{2}\right)$

CDCL (5)

CNF
$\left(\neg b \vee \neg h_{1}\right) \wedge$
$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
$\left(h_{2}\right)$

CDCL (5)

CNF
$\left(\neg b \vee \neg h_{1}\right) \wedge$
$\left(c \vee \neg h_{1}\right) \wedge$
$\left(b \vee \neg c \vee h_{1}\right) \wedge$
$\left(a \vee h_{1} \vee \neg h_{2}\right) \wedge$
$\left(a \vee \neg h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee h_{1} \vee h_{2}\right) \wedge$
$\left(\neg a \vee \neg h_{1} \vee \neg h_{2}\right) \wedge$
$\left(h_{2}\right)$

$$
\begin{aligned}
& \mathrm{PC}+\mathrm{MAP}+\mathrm{CNF} \\
& \left(h_{1}=y^{2}\right) \wedge \\
& \left(h_{2}=x+h_{1}\right) \wedge \\
& \left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge \\
& \left(a \vee h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(a \vee \neg h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(h_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PC}+\mathrm{MAP}+\mathrm{CNF} \\
& \left(h_{1}=y^{2}\right) \wedge \\
& \left(h_{2}=x+h_{1}\right) \wedge \\
& \left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge \\
& \left(a \vee h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(a \vee \neg h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(h_{4}\right)
\end{aligned}
$$

Tseitin-like

Transformation

$$
\left(h_{1}=y^{2}\right)
$$

$$
\left(h_{2}=x+h_{1}\right)
$$

$$
\left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right)
$$

$$
\left(h_{4} \Leftrightarrow\left(a \oplus h_{3}\right)\right)
$$

SMT Formula

$\left(a \oplus\left(x+y^{2}<5\right)\right)$
linear and nonlinear real arithmetic with transcendental functions

- maintain interval for every real- or integer-valued variable
- PC: primitive constraints: $\left(h_{1}=y^{2}\right),\left(h_{2}=x+h_{1}\right)$
- MAP: map literals to simple bounds: $\left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right)$

PC +		Assignment		
($h_{1}=$)	Variable	Type	Value	
$\left(h_{2}=\right.$	a	bool	false	nula
$\left(h_{3} \Leftrightarrow\right.$	x	real	\ldots	<5))
($a \vee$ h,	y	real	...	
$(a \vee \neg$	h_{1}	real	\ldots	alarithmetic
$(\neg a \vee$	h_{2}	real	h_{3}	tunctions
$\begin{aligned} & (\neg a \vee \\ & \left(h_{4}\right) \end{aligned}$	h_{3}	bool simple bound $\left(h_{2}<5\right)$	true	
- maint	h_{4}	bool	true	able

- MAP: map literals to simple bounds: $\left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right)$

$$
\begin{aligned}
& \mathrm{PC}+\mathrm{MAP}+\mathrm{CNF} \\
& \left(h_{1}=y^{2}\right) \wedge \\
& \left(h_{2}=x+h_{1}\right) \wedge \\
& \left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge \\
& \left(a \vee h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(a \vee \neg h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(h_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PC}+\mathrm{MAP}+\mathrm{CNF} \\
& \left(h_{1}=y^{2}\right) \wedge \\
& \left(h_{2}=x+h_{1}\right) \wedge \\
& \left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge \\
& \left(a \vee h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(a \vee \neg h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(h_{4}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{PC}+\mathrm{MAP}+\mathrm{CNF} \\
& \left(h_{1}=y^{2}\right) \wedge \\
& \left(h_{2}=x+h_{1}\right) \wedge \\
& \left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge \\
& \left(a \vee h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(a \vee \neg h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee h_{3} \vee h_{4}\right) \wedge \\
& \left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge \\
& \left(h_{4}\right)
\end{aligned}
$$

$P C+M A P+C N F$
$\left(h_{1}=y^{2}\right) \wedge$
$\left(h_{2}=x+h_{1}\right) \wedge$
$\left(h_{3} \Leftrightarrow\left(h_{2}<5\right)\right) \wedge$
$\left(a \vee h_{3} \vee \neg h_{4}\right) \wedge$
$\left(a \vee \neg h_{3} \vee h_{4}\right) \wedge$
$\left(\neg a \vee h_{3} \vee h_{4}\right) \wedge$
$\left(\neg a \vee \neg h_{3} \vee \neg h_{4}\right) \wedge$
$\left(h_{4}\right)$

	SAT	iSAT3
Deductions	\bullet BCP for clauses	\bullet BCP for clauses evaluate simple bound literals \rightsquigarrow implication clauses
		\bullet ICP for PC \rightsquigarrow arithmetic clauses
Decisions	\bullet decide literals	\bullet decide literals \bullet generate new simple bound literals and decide them
		ngaph (1UIP) \rightsquigarrow conflict clauses
Conflict Analyses	traverse implication graph (1UIP) \rightsquigarrow conflict clauses	

$\left.\left.\begin{array}{|l|l|l|}\hline & \text { SAT } & \text { iSAT3 } \\ \hline \text { Deductions } & \bullet \text { BCP for clauses } & \begin{array}{l}\bullet \text { BCP for clauses } \\ \text { evaluate simple bound } \\ \text { literals } \\ \rightsquigarrow \text { implication clauses }\end{array} \\ & & \begin{array}{l}\bullet \text { ICP for PC } \\ \rightsquigarrow ~ a r i t h m e t i c ~ c l a u s e s ~\end{array}\end{array}\right] \begin{array}{l}\bullet \text { decide literals } \\ \bullet \text { generate new simple } \\ \text { bound literals } \\ \text { and decide them }\end{array}\right]$

Implication Clauses:
■ unassigned simple bound literals are evaluated lazily

- therefore implications possible: $\left(h_{2}<5\right) \Rightarrow\left(h_{2}<7\right)$

Arithmetic Clauses:

- result of interval constraint propagation (ICP)
- e.g. $h_{2}=x+h_{1}:\left((x \leq 3) \wedge\left(h_{1}<2\right)\right) \Rightarrow\left(h_{2}<5\right)$
- redirect, e.g. $x=h_{2}-h_{1}:\left(\left(h_{2}<10\right) \wedge\left(h_{1} \geq 1\right)\right) \Rightarrow(x<9)$
- using floating-point numbers for interval bounds
- always round outwards for safe enclosing intervals
- generate new simple bound literals

iSAT3 Summarized

iSAT3 = CDCL + ICP, goes beyond CDCL(T):
Boolean abstraction contains

CDCL(T)	iSAT3
combinations of truth values of the theory atoms	interval bounds of theory variables and sub-expressions

iSAT3 Summarized

iSAT3 $=$ CDCL + ICP, goes beyond CDCL(T):

Boolean abstraction contains

CDCL(T)	iSAT3
combinations of truth values of the theory atoms	interval bounds variables and sub-
iSAT3 is the 3rd implementation of the iSAT algorithm. Abstract CDCL with interval abstraction has similarities to the iSAT algorithm iSAT algorithm: "Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure", JSAT 2007 $\begin{array}{ll}\text { Abstract CDCL: } & \text { "Deciding Floating-Point Logic with Systematic Abstraction", } \\ & \text { FMCAD } 2012\end{array}$	

iSAT3 = CDCL + ICP, goes beyond CDCL(T):
Boolean abstraction contains

CDCL(T)	iSAT3
combinations of truth values of the theory atoms	interval bounds of theory variables and sub-expressions

1 new arithmetic operations \rightsquigarrow add ICP-contractors
2 need to adapt Boolean abstraction for floating-point

Accurate Reasoning for Floating-Point Arithmetic

Accurate Reasoning for FP (1)

IEEE-754 Specification (float, 32 bits)

Bitpos \rightarrow	31	$30 \ldots 23$	$22 \ldots 0$
	sign	exponent	fraction / mantissa

1 normal numbers:

- mantissa bitpos 23 assumed to be 1
- exponent $1 \rightsquigarrow-126 \quad \ldots \quad 254 \rightsquigarrow+127$
- sign $0 \rightsquigarrow$ positive $1 \rightsquigarrow$ negative

2 special numbers:

- signed zeros $(-0,+0)$
- $-\infty,+\infty$ (-inf, + inf)
- subnormal numbers (leading zeros in mantissa)
- not a number (NaN)

3 rounding modes (up, down, nearest)

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

Accurate Reasoning for FP (2)

32 bit floating-point values and their ordering

Accurate Reasoning for FP (3)

simple bound ordering:
-inf $<-0 \times 1$.fffffep $+127<\ldots$
$\ldots<-0 x 0.000002 p-126<-0<+0<+0 x 0.000002 p-126<\ldots$
$\ldots<+0 x 1$. fffffep $+127<+$ inf

- no strict bounds needed:
reals: $\quad(x \leq 5) \Leftrightarrow \neg(x>5)$
floating-point: $\quad(x \leq-0 \times 0.000002 p-126) \Leftrightarrow \neg(x \geq-0)$
\square floating-point comparison operators and signed zeros:
\square ($\mathrm{x}<=0$) $\rightsquigarrow(x \leq+0)$
$\square(\mathrm{x}>=0) \rightsquigarrow(x \geq-0)$
\square ($\mathrm{x}==0$) $\rightsquigarrow(x \geq-0) \wedge(x \leq+0)$

Accurate Reasoning for FP (3)

32 bit floating-point values and their ordering

Accurate Reasoning for FP (3)

32 bit floating-point values and their ordering

$\mathrm{NaN} ?$

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
    printf("%1.2f\n", a);
    if (a < 0) printf("if\n");
    else printf("else\n");
    if (a >= 0) printf("if\n");
    else printf("else\n");
    return (0);
    }
```

-nan
else
else

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
    printf("%1.2f\n", a);
    if (a <= 0) printf("if\n");
    else printf("else\n");
    if (a > 0) printf("if\n");
    else printf("else\n");
    return (0);
    }
```

-nan
else
else

Accurate Reasoning for FP (4)

```
#include <math.h>
#include <stdio.h>
int main(void) {
    double a = sqrt(-1);
    printf("%1.2f\n", a);
    if (a == 0) printf("if\n");
    else printf("else\n");
    if (a != 0) printf("if\n");
    else printf("else\n");
    return (0);
    }
```

-nan
else
if

Accurate Reasoning for FP (5)

	SAT	iSAT3
Deductions	\bullet BCP for clauses	\bullet BCP for clauses evaluate simple bound literals
		ICP implication clauses \bullet ICP PC \rightsquigarrow arithmetic clauses
		\bullet decide literals literals \bullet generate new simple bound literals and decide them
Decisions	• traverse implication graph (1UIP) \rightsquigarrow conflict clauses	traverse implication graph (1UIP) \rightsquigarrow conflict clauses
Conflict Analyses		

Accurate Reasoning for FP (5)

■ NaN incomparable against all other values: $(x \sim \mathrm{NaN}), \sim \in\{<, \leq,=, \geq,>\}$ is always false

- adapt Boolean encoding: special literal x_{NaN}

x_{NaN}	x is NaN
$\neg x_{\mathrm{NaN}}$	x is determined by simple bound literals
	$(x \leq-$ inf $) \ldots(x \leq-0) \ldots$

Accurate Reasoning for FP (5)

- implication clauses:
$\left(\neg x_{N a N} \wedge(x \leq 5)\right) \Rightarrow(x \leq 7)$
- arithmetic clauses: $h=x+y$

$$
\left(\neg x_{N a N} \wedge \neg y_{N a N} \wedge \neg h_{N a N} \wedge(x \leq 3) \wedge(y \leq 2)\right) \Rightarrow(h \leq 5)
$$

- not shown here, but x_{NaN} also relevant during Tseitin-like transformation
\square besides $<, \leq,=, \geq,>$ operators, further operator to mimic behaviour of assignments: $\mathrm{x}=\mathrm{y}$ vs. $\mathrm{x}==\mathrm{y}$

Accurate Reasoning for FP (6)

New ICP-Contractors for $+,-, *, /$ (round-to-nearest):

1 NaN cases: handled outside with separate clauses

2 forward deduction: execute operation with round-to-nearest

3 backward deduction: only redirecting the primitive constraint is not enough

Accurate Reasoning for FP (6)

New ICP-Contractors for $+,-, *, /($ round-to-nearest):

1 NaN cases: handled outside with separate clauses

2 forward deduction: execute operation with round-to-nearest

3 backward deduction: only redirecting the primitive constraint is not enough

ICP-contractors called when NaN-literals of operands false (otherwise the created arithmetic clauses not unit)

Accurate Reasoning for FP (6)

1 Separate clauses for primitive constraint $(h=x+y)$:

$$
\begin{aligned}
& x \text { or } y \text { is } \mathrm{NaN} \\
& x \text { and } y \text { are infinities with opposite signs } \\
& x \text { and } y \text { are not } \mathrm{NaN} \text { and } x \text { is never -inf or +inf } \\
& x \text { and } y \text { are not } \mathrm{NaN} \text { and } y \text { is never -inf or +inf } \\
& x \text { and } y \text { are not } \mathrm{NaN} \text { and } x \text { and } y \text { are never -inf } \\
& x \text { and } y \text { are not } \mathrm{NaN} \text { and } x \text { and } y \text { are never +inf } \\
& \left(\neg x_{\mathrm{NaN}} \vee h_{\mathrm{NaN}}\right) \wedge\left(\neg y_{\mathrm{NaN}} \vee h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee \neg(x \leq \text {-inf }) \vee \neg(y \geq+ \text { inf }) \vee h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee \neg(x \geq+ \text { inf }) \vee \neg(y \leq- \text { inf }) \vee h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee(x \leq \text {-inf }) \vee(x \geq+ \text { inf }) \vee \neg h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee(y \leq \text {-inf }) \vee(y \geq+ \text { inf }) \vee \neg h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee(x \leq \text {-inf }) \vee(y \leq \text {-inf }) \vee \neg h_{\mathrm{NaN}}\right) \wedge \\
& \left(x_{\mathrm{NaN}} \vee y_{\mathrm{NaN}} \vee(x \geq+ \text { inf }) \vee(y \geq+ \text { inf }) \vee \neg h_{\mathrm{NaN}}\right)
\end{aligned}
$$

$\Rightarrow \quad h$ is NaN
$\Rightarrow \quad h$ is NaN
$\Rightarrow \quad h$ is not NaN

Accurate Reasoning for FP (6)

2 Forward deduction primitive constraint $(h=x+y)$:

$$
\begin{aligned}
& h \in[- \text { inf, +inf }], \\
& x \in[0 \times 1.1 p+100,0 \times 1.1 p+100], \\
& y \in[-0 \times 1.1 p+11,-0 \times 1.1 p+10] \\
& h_{l b}=x_{l b}+y_{l b} \quad=0 \times 1.1 p+100+-0 \times 1.1 p+11=0 \times 1.1 p+100 \\
& h_{u b}=x_{u b}+y_{u b}=0 \times 1.1 p+100+-0 \times 1.1 p+10=0 \times 1.1 p+100
\end{aligned}
$$

apply operation with round-to-nearest

Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint $(h=x+y)$:

$$
\begin{aligned}
& h \in[0 \times 1.1 p+100,0 \times 1.1 p+100], \\
& x \in[0 \times 1.1 p+100,0 \times 1.1 p+100], \\
& y \in[-0 \times 1.1 p+11,-0 \times 1.1 p+10] \\
& y_{l b}=h_{l b}-x_{u b}=0 \times 1.1 p+100-0 \times 1.1 p+100=0 \\
& y_{u b}=h_{u b}-x_{l b}=0 \times 1.1 p+100-0 \times 1.1 p+100=0 \\
& \\
& {[-0 \times 1.1 p+11,-0 \times 1.1 p+10] \cap[0,0]=\emptyset} \\
& \text { simply redirecting and rounding outward is WRONG! }
\end{aligned}
$$

Accurate Reasoning for FP (6)

3 Backward deduction primitive constraint $(h=x+y)$:

$$
\begin{aligned}
& h \in[0 \times 1.1 \mathrm{p}+100,0 \times 1.1 \mathrm{p}+100], \\
& x \in[0 \times 1.1 \mathrm{p}+100,0 \times 1.1 \mathrm{p}+100] \\
& y \in[-0 \times 1.1 p+11,-0 \times 1.1 p+10] \\
& \begin{aligned}
y_{l b}=h_{l b}-x_{u b} & =\operatorname{prev}(0 \times 1.1 p+100)-\operatorname{next}(0 \times 1.1 p+100) \\
& =0 \times 1.0 f f f f e p+100-0 \times 1.100002 p+100 \\
& =-0 \times 1.000000 p+78 \\
y_{u b}=h_{u b}-x_{l b} & =\operatorname{next}(0 \times 1.1 p+100)-\operatorname{prev}(0 \times 1.1 p+100) \\
& =0 \times 1.100002 p+100-0 \times 1.0 f f f f e p+100 \\
& =0 \times 1.000000 p+78
\end{aligned}
\end{aligned}
$$

Accurate Reasoning for FP Summarized

- floating-point arithmetic contains special values
- ordering possible, except NaN
- unordered $\mathrm{NaN} \rightsquigarrow$ adapted Boolean encoding
- implication clauses
- arithmetic clauses

■ new ICP-contractors for floating-point operations

- NaN-cases handled with BCP
- outward rounding not enough in backward deduction

ICP-Contractors for Bitwise Integer Operations

ICP-Contractors for Bitwise Operations (1)

- operating on intervals
- a bit-pattern can be interpreted as signed or unsigned

	00010001	10000001
signed char	17	-127
unsigned char	17	129

- need to know bitwidth and signedness of each operation
- s_NOT(arg, bitwidth), u_NOT(arg,bitwidth)
- s_AND(arg1,arg2,bitwidth), u_AND(arg1,arg2,bitwidth)
- s_or(arg1,arg2,bitwidth), u_OR(arg1,arg2,bitwidth)
- s_xOR(arg1,arg2,bitwidth), u_xOR(arg1,arg2,bitwidth)
- s_CASt(arg,bitwidth), u_CASt(arg,bitwidth)

ICP-Contractors for Bitwise Operations (2)

$\square(h=x+y), x \in[1,7], y \in[1,8]:$ $h_{l b}=x_{l b}+y_{l b}=1+1=2$ $h_{u b}=x_{u b}+y_{u b}=7+8=15$ \rightsquigarrow operating on bounds OK

■ ($h=$ U_AND $(x, y, 8)), x \in[1,7], y \in[1,8]:$ $h_{l b}=x_{l b} \& y_{l b}=1 \& 1=1 \quad(1 \& 2=0)$
$h_{u b}=x_{u b} \& y_{u b}=7 \& 8=0 \quad(7 \& 7=7)$
\rightsquigarrow operating on bounds WRONG

ICP-Contractors for Bitwise Operations (3)

1 use addition, subtraction, minimum and maximum to get safe overapproximations of the lower and upper bounds,
e.g. $\left(h=U _\operatorname{AND}(x, y, 8)\right), x \in[1,7], y \in[1,8]$:
$h_{u b}=\min \left(x_{u b}, y_{u b}\right)=\min (7,8)=7$
2 exploit common bit-prefixes,
e.g. $\left(h=u _\operatorname{AND}(x, y, 8)\right), x \in[18,30], y \in[89,92]$:
$x_{l b}=18=00010010$
$x_{u b}=30=00011110$ 0001 common bit-prefix for values in x

$$
\begin{aligned}
& y_{l b}=89=01011001 \\
& y_{u b}=92=01011100 \\
& \\
& \\
& h_{l b}=01011 \quad \text { common bit-prefix for values in } y \\
& h_{u b}=00010000 \& 01011000=00010000=16
\end{aligned} \begin{aligned}
& \text { trailing bits are } 0 \\
& h_{u b}=0001111 \& 01011111=00011111=31
\end{aligned} \text { trailing bits are } 1 .
$$

ICP-Contractors for Bitwise Operations (3)

1 use addition, subtraction, minimum and maximum to get safe overapproximations of the lower and upper bounds, e.g. $(h=\operatorname{U}$ _AND $(x, y, 8)), x \in[1,7], y \in[1,8]$:

A detailed description of all operations can be found in AVACS Technical Report 116:
"Extending iSAT3 with ICP-Contractors for Bitwise Integer Operations"
$\begin{array}{lll}y_{l b}=89=01011001 \\ y_{u b}= & 01011100 \quad \text { common bit-prefix for values in } y\end{array}$
$h_{l b}=00010000 \& 01011000=00010000=16 \quad$ trailing bits are 0
$h_{u b}=00011111 \& 01011111=00011111=31 \quad$ trailing bits are 1

Optimizations

Intermediate Point-Splits

decomposition into PCs might lead to coarser intervals, e.g. $((x+y)-x \leq 7) \rightsquigarrow\left(h_{1}=x+y\right) \wedge\left(h_{2}=h_{1}-x\right)$ $x, y \in[0,10]: h_{1} \in[0,20], h_{2} \in[-10,30] \supset[0,10]$

- tighter intervals if x is point interval
- change decision heuristic, every k-th interval split will assign a point interval $(k=4)$
- might help to find a solution, BUT: detrimental for conflict clauses

Global-ICP (1)

$$
\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq \operatorname{S_ CAST}\left(I T E\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots
$$

Global-ICP (1)

$\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq S_{-C A S T}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots$

with $a=1$:

$$
\begin{array}{ll}
\ldots \wedge\left(i_{1}-i_{2}=0\right) & \wedge\left(i_{1} \neq S_{\text {_CAST }}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots \wedge\left(i_{1}=i_{2}\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{1}, 0\right), 32\right)\right) \wedge \ldots
\end{array}
$$

Global-ICP (1)

$\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq S_{-C A S T}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots$
with $a=1$:

$$
\begin{array}{ll}
\ldots \wedge\left(i_{1}-i_{2}=0\right) & \wedge\left(i_{1} \neq S_{\operatorname{CCAST}}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots \wedge\left(i_{1}=i_{2}\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots & \wedge\left(i_{1} \neq \operatorname{s} \operatorname{CAST}\left(\operatorname{ITE}\left(b, i_{1}, 0\right), 32\right)\right) \wedge \ldots
\end{array}
$$

with $b=1$:

$$
\wedge\left(i_{1} \neq \text { s_CAST }\left(i_{1}, 32\right)\right) \wedge \ldots
$$

Global-ICP (1)

$\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq S_{-C A S T}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots$
with $a=1$:

$$
\begin{array}{ll}
\ldots \wedge\left(i_{1}-i_{2}=0\right) & \wedge\left(i_{1} \neq S_{\operatorname{CCAST}}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots \wedge\left(i_{1}=i_{2}\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots & \wedge\left(i_{1} \neq \operatorname{s} \operatorname{CAST}\left(\operatorname{ITE}\left(b, i_{1}, 0\right), 32\right)\right) \wedge \ldots
\end{array}
$$

with $b=1$:

$$
\wedge\left(i_{1} \neq \text { S_CAST }^{2}\left(i_{1}, 32\right)\right) \wedge \ldots
$$

with $i_{1} \in\left[0,2^{31}-1\right]$:

$$
\wedge\left(i_{1} \neq i_{1}\right) \wedge \ldots
$$

Global-ICP (1)

$\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq S_{-C A S T}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots$
with $a=1$:

$$
\begin{array}{ll}
\ldots \wedge\left(i_{1}-i_{2}=0\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots \wedge\left(i_{1}=i_{2}\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{1}, 0\right), 32\right)\right) \wedge \ldots
\end{array}
$$

with $b=1$:

$$
\wedge\left(i_{1} \neq \text { S_CAST }\left(i_{1}, 32\right)\right) \wedge \ldots
$$

with $i_{1} \in\left[0,2^{31}-1\right]$:

$$
\wedge\left(i_{1} \neq i_{1}\right) \wedge \ldots
$$

but this symbolic dependency is not visible for ICP

$$
\begin{array}{ll}
\left(h_{1}=i_{1}-i_{2}\right) \wedge & \\
\left(h_{2}=\operatorname{ITE}\left(b, i_{2}, 0\right)\right) \wedge & \text { just looking at these } \\
\left(h_{3}=\operatorname{s_ SCAST}\left(h_{2}, 32\right)\right) \wedge & \text { primitive constraints } \\
\left(h_{4}=i_{1}-h_{3}\right) &
\end{array}
$$

$\ldots \wedge\left(a \rightarrow\left(i_{1}-i_{2}=0\right)\right) \wedge\left(i_{1} \neq S_{-C A S T}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots$
with $a=1$:

$$
\begin{array}{ll}
\ldots \wedge\left(i_{1}-i_{2}=0\right) & \wedge\left(i_{1} \neq S_{\operatorname{SCAST}}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots \wedge\left(i_{1}=i_{2}\right) & \wedge\left(i_{1} \neq \operatorname{s_ CAST}\left(\operatorname{ITE}\left(b, i_{2}, 0\right), 32\right)\right) \wedge \ldots \\
\ldots & \wedge\left(i_{1} \neq \operatorname{s}_{2} \operatorname{CAST}\left(\operatorname{ITE}\left(b, i_{1}, 0\right), 32\right)\right) \wedge \ldots
\end{array}
$$

with $b=1$:

$$
\wedge\left(i_{1} \neq \mathrm{s}_{-} \operatorname{CAST}\left(i_{1}, 32\right)\right) \wedge \ldots
$$

with $i_{1} \in\left[0,2^{31}-1\right]$:

$$
\wedge\left(i_{1} \neq i_{1}\right) \wedge \ldots
$$

but this symbolic dependency is not visible for ICP

$$
\begin{array}{ll}
\left(h_{1}=i_{1}-i_{2}\right) \wedge & \\
\left(h_{2}=\operatorname{ITE}\left(b, i_{2}, 0\right)\right) \wedge & \text { just looking at these } \\
\left(h_{3}=\operatorname{s} \operatorname{SCAST}\left(h_{2}, 32\right)\right) \wedge & \text { primitive constraints } \\
\left(h_{4}=i_{1}-h_{3}\right) &
\end{array}
$$

ICP with smallest possible bound improvement for i_{1} :

$$
\rightsquigarrow\left[1,2^{31}-1\right] \rightsquigarrow\left[2,2^{31}-1\right] \rightsquigarrow\left[2,2^{31}-2\right] \rightsquigarrow \ldots
$$

- ICP with smallest possible bound improvement for i_{1} : $\rightsquigarrow\left[1,2^{31}-1\right] \rightsquigarrow\left[2,2^{31}-1\right] \rightsquigarrow\left[2,2^{31}-2\right] \rightsquigarrow \ldots$
- more than 64 deductions per variable per decision level:

11 no further deductions for this variable
2 analyze implication graph, collect involved primitive constraints (the 4 PCs from previous slide)

- analyze primitive constraints semi-symbolically
\square conflicting clause which spans more than one PC, e.g.
$\left(b \wedge\left(h_{1} \geq 0\right) \wedge\left(h_{1} \leq 0\right) \wedge\left(i_{2} \geq 0\right) \wedge\left(i_{2} \leq 2^{31}-1\right)\right) \Rightarrow\left(h_{4} \leq 0\right)$

Results

Results (1)

- 213 pure floating-point benchmarks from the FP-ACDCL paper
- Comparison between FP-ACDCL (ICP-based), Mathsat (bit-blasting) and iSAT3 (ICP-based)
- Timeout: 900 seconds, Memout: 2 GB

Solver	S+U	SAT	UNSAT	TO	MO
FP-ACDCL	173	97	76	40	0
Mathsat 5.3.11	182	101	81	23	8
iSAT3	164	90	74	47	2
iSAT3 + psplits	186	111	75	27	0
iSAT3 + psplits + gicp	193	111	82	20	0

Results (1)

Results (2)

■ 8778 BMC benchmarks generated by BTC toolchain, containing floating-point and bitwise integer operations

- Comparison between CBMC (bit-blasting, k-induction) and iSAT3 (ICP-based, Craig interpolation)
both with on-the-fly translation from SMI to their input language
- Timeout: 60 seconds

Solver	S+U	SAT	U51	U_{∞}	TO
SMI-CBMC	8099	7424	44	631	679
SMI-iSAT3	7647	6671	153	823	1131
SMI-iSAT3 + psplits	8169	7192	156	821	609
SMI-iSAT3 + psplits + gicp	8430	7427	172	831	348

Results (2)

Conclusion

Conclusion

dead-code detection in C programs = accurate floating-point reasoning + bitwise integer operations

- iSAT3: first non-bit-blasting SMT solver supporting the full range of basic data types and operations in C programs
- promising results:
- outperforms bit-blasting solvers (MathSAT, CBMC)
- outperforms other ICP-based solver (FP-ACDCL)
- Outlook: also integrate ICP-contractors for floating-point sine, cosine

