Verifiable Hierarchical Protocols with Network Invariants on Parametric Systems

Opeoluwa Matthews, Jesse Bingham, Daniel Sorin

Problem Statement

Problem Statement

- Parametric model checkers fall short
 - Suitable for flat protocols
 - Can't handle asymmetry in hierarchical protocols
- Solution: Design specifically to fit automated techniques
- Formally specify class of transition systems Neo
 - Require properties that enable automated safety verification
 - Key: Network invariants + parameterized verification

Illustration of our Approach

- Neo formalized on I/O Automata (IOA) process theory
- Neo system is an IOA with specific properties for actions, composition, and executions
- 3 classes of IOA
 - Internal node
 - Leaf node
 - Root node
- Define 3 sets of actions
 - Upward actions U
 - Downward actions D
 - Peer-to-peer actions P

Internal Node

n-child *k*-peer *Internal Node I* is IOA that:

 Communicates with 1 parent, n children, k-1 peers, with index i

Leaf Node

Leaf node *L* is 0-child, *k*-peer internal node:

• Communicates with 1 parent and k-1 peers, with index i

Root Node

n-child **Root Node** *R* is IOA that:

Communicates with n children

 $d \in D, u \in U$

output actions

input actions

Defining Neo Systems

k-peer Leaf *L* is *Open Neo System*, communicates with *k*-1 peers

Defining Neo Systems

Defining Neo Systems

Network Invariants on Neo Systems

- Network Invariants captures behavior of subhierarchies (open Neo systems)
 - Require: Every open Neo system must implement leaf wrt \preceq
- \leq captures summaries of states and executions
 - Summary states
 - Summary functions
 - Summary sequences of executions

- Sum is set of summary states, with special element bad
- Have sum_* functions for every Neo system to capture summary state of each subhierarchy
- For leaf L, sum_L : $states(L) \rightarrow Sum$
- For each n-child root or internal node A,

 $sum_A: states(A) \times Sum^n \rightarrow Sum$

 $bad \in \{s_0, \ldots, s_{n-1}\}$ implies $sum_A(s, s_0, \ldots, s_{n-1}) = bad$

Summarizing States – Neo systems

n

• For Neo system
$$\Omega = A \cdot \prod_{i=0}^{n-1} \Omega_i$$

define $sum_{\Omega}: states(\Omega) \to Sum$ as

$$sum_{\Omega}(s_a, s_0, \dots, s_{n-1}) =$$

$$sum_A(s_a, sum_{\Omega_0}(s_0), \dots, sum_{\Omega_{n-1}}(s_{n-1}))$$

$s \in states(\Omega)$ safe if $sum_{\Omega}(s) \neq bad$

 Ω safe if all reachable states are safe

• Generate summary sequence of exec e of Ω as follows:

$$e = s_0, \alpha_1, \dots, \alpha_k, s_k$$
 action
summarize states

$$sum_{\Omega}(s_0), \alpha_1, \ldots, \alpha_k, sum_{\Omega}(s_k)$$

Remove "silent" terms that don't affect safety Delete all $\alpha_i, sum_{\Omega}(s_i)$ such that $\alpha_i \in int(\Omega)$ and $sum_{\Omega}(s_i) = sum_{\Omega}(s_{i-1})$

- Need preorder for network invariants
- Given 2 open Neo systems $\ \Omega_1$, Ω_2

 $\Omega_1 \preceq \Omega_2$ implies for all executions e_1 of Ω_1 there exists execution e_2 of Ω_2 such that $sum(e_1) = sum(e_2)$

Theorem 1. (Every Neo system is safe.) Suppose that for each *n*-child internal or root node A, $\Omega_L = A \cdot \prod_{i=0}^{n-1} \phi_i(L)$ is safe. Furthermore, suppose that if A is an internal node, then $\Omega_L \preceq L$. Then all Neo systems are safe.

Antecedents:

- 1. Every 1-level (all-leaf) open or closed neo system safe
- 2. Every 1-level (all-leaf) open neo system implements leaf
- If 1. and 2. can be performed in parametric model checker <u>Implication</u>: Reduced 2-dimensional verification problem to 1 dimension

- We design and verify hierarchical coherence protocol *NeoGerman*
- Modify (originally flat) German protocol into Neo hierarchy
- Coherence defined on predicates {*E*,*S*,*I*} on cache states
- 2 private caches in (E, E) or (E, S) prohibited

- Root node is same as directory of German protocol
 - Ω_R is closed Neo system
- To get open Neo system Ω_I , modify directory to be internal node (talk to parent)
- Internal node has state variable *Permissions*, captures summary of subhierarchy

NeoGerman Summary Functions

- Preorder, safety defined w.r.t summary functions
- Need: if safety violated \rightarrow function returns *bad*
- Create ordering < on *Sum*: I < S < E < *bad*
- 2 constraints on sum_A :

1)
$$sum_A(s_a, s_0, \dots, s_{n-1}) = bad$$
 if $s_i = E$ and $s_j \neq I$
2) $s_i \leq sum_A(s_a, s_0, \dots, s_{n-1})$

• Output of sum_A always returns value of *Permissions*

- All verification done automated in Cubicle parametric model checker
 - SMT-based, backward reachability
 - Similar syntax to Murφ, guard/action semantics
 - Clean, promising results, great support!
- Must prove antecedents of Theorem 1
 - 1. Ω_R and Ω_I safe express in Cubicle
 - 2. $\Omega_I \preceq L$ (preorder) trickier

- Model both Ω_I and L in same Cubicle program
- Force Ω_I and *L* to transition in lockstep, starting with Ω_I
- Have variables O_action and L_action, represent IOA action, updated after each transition, internal actions updated to λ (silent)
- One each transition, there needs to exist *L* step that "matches" Ω_I step
 - To reveal witness step, conjunct expression to *L* guards, forcing *L* take "right" step w.r.t Ω_I step.
 - Note: conjunction can only restrict *L* behavior

Preorder Proof

After each Ω_I step, Cubicle checks:

- There exists *L* action that can fire
 - Cubicle safety prop: Disjunction of all *L* guards is true

After each pair of Ω_I and *L* steps, Cubicle checks:

• O_action=L_action, summary state outputs match

What Safety Properties can Neo Verify?

• Define class of FOL formulas we can verify are invariant

Given set $LP = \{p_1, \dots, p_m\}$ of predicates on leaf states and proposition logic formula $P(L_1, \dots, L_k)$ over atoms of form $p_j(L_i)$

- We can verify all safety properties of the form: $\forall L_1, \dots, L_k.Distinct(L_1, \dots, L_k) \Rightarrow P(L_1, \dots, L_k)$
- E.g., $LP=\{E,S,I\} \forall L_1, L_2.Distinct(L_1, L_2) \Rightarrow (E(L_1) \Rightarrow I(L_2))$
- We provide summary function guaranteed to verify all such safety properties

- Industrial-strength hierarchical coherence protocol
 - Request forwarding
 - MESI coherence permissions
 - Support for unordered networks
- Distributed lock management
 - Richer permissions (NL, CR, CW, PR, PW, EX)
- Dynamic power management
 - Natural hierarchy in datacenters

- Neo framework enables design and automated verification of hierarchical protocols safe for arbitrary configurations
- Case study: Design and verify hierarchical coherence protocol
 - Correct for arbitrary size, depth, branching degrees per node
 - Proof completely automated in parametric model checker
- Prove observational preorder in parametric setting

