Testing Composable
Specifications

Ken McMillan

Microsoft Research

Case study

* TileLink is a protocol for implementing a coherent
memory in a system-on-chip (SoC).

e Goal: a formal, modular specification of TileLink
e Specify the protocol
* Prove that it implements correct memory semantics
* Rigorously test component implementations
e Allow rapid configuration of SoC designs

TileLink system

e Hierarchy of memory system components for SoC
using a common interface protocol.

TL TL TL TL

Hierarchy implements weakly consistent memory model.

Modular verification

* General approach:
* Write generic formal specifications of components
* Verify components locally against specifications
* |Infer that systems of such components are correct

 Composable specifications:

e Correctness of components implies correctness of
system.

* With a composable specification, we can assemble
arbitrary configurations of components.

Some composable specifications are better than others, however...

Good composability

* Assume/guarantee specifications
e A conjunction of temporal properties of interfaces
* Assume/guarantee relationships

L A:“G (Hq = p)”
A ' B: “G (Hp = q)”
1 q v
AlB: “G(p A q)” composable!

This proof is checkable in P-time

We want our specifications to be composable “by construction”.

Memory semantics

op(loc,kind,addr,data)

|
Memory operations: read
CPU write
atomic

Happens-before relation on operations:
happens-before(op,, 0p,) & loc(op,) = loc(op,) A time(op;) < time(op,)

A (addr(op4) = addr(op,) V atomic(op,) V atomic(op,))

Consistency:

A sequence of ops is consistency if every read sees value of most recent write.

Weak consistency:

A set of operations is weakly consistent if there exists an ordering m s.t:
e 1 respects happens-before
* 71T is consistent

Problem

* How do you write a “good” composable
specification for a system if its key property refers to
all events in the system?

How do we withess the serialization ?

How do local operations fit into the global serialization?

Solution

* Add a “reference object”.
e Constructs the witness for .
 Verifies consistency m as it is constructed

create
_ create : op X loc = stamp
commit . .
commit : stamp = unit
eval eval : stamp — value

commit(stamp): assumes happens-before(X,op(stamp)) = committed(X)

value = eval(stamp): assumes committed(stamp)
guarantees value = result(m,op(stamp))

These operations allow us to define the semantics of the system interfaces.

TileLink system

e Hierarchy of memory system components for SoC
using a common interface protocol.

TL TL TL TL

TileLink interface protocol

* Protocol messages implement
e Coherent requests (MESI)
* |nvalidation
e Ordered, non-coherent operations

* |Interface has two roles:
e Client = processor
® I\/Ianager ~ memory

Typical transaction flow at interface

client
Acqu\im\ GrW Fini\ PV ReI;*\

manager

Writing a “good” composable spec

 Specification has two parts:
 Temporal properties of interface
* Assume/guarantee relationships between properties

* Interface properties of two types:
* |Interface protocol properties
e Semantic properties, relative to reference object

Semantic interface properties

These properties refer to the reference object to define
ordering and data values at the interface.

* Manager-side properties
e M[1]: Data in cached Grant must match ref.mem.
* M[2]: If uncached resp. then committed(stamp)
* M[3]: If uncached resp. then data = eval(stamp)

* Client-side properties
e C[1]: Data in cached Release must match ref.mem.

e C[2]: If uncached req. then happens-before(X,stamp)
implies requested(X).
e C[3]: If uncached resp. then data = eval(stamp)

Commitment properties

The coherence state determines what commitments are
allowed on either side of the interface. This is the
function of coherence.

e Client-side commitments:

e SC[1]: Read may be committed on client side only if interface
has shared or exclusive permissions.

e SC[2]: Write may be committed on client side only if interface
has exclusive permissions.
* Manager-side properties

 SM[1]: Read may be committed on manager side only if
interface has shared or invalid permissions.

* SM[2]: Write may be committed on manager side only if
interface has invalid permissions.

Note: “client side” means any component left of the interface.

Assume/guarantee relationships

* An L2 cache has TileLink interfaces on processor side and memory side.

reference object

Assume/guarantee relationships

* An L2 cache has TileLink interfaces on processor side and memory side.

Cn M, C. M,
—> comp |€E—t—> P <> comp >
ESMm « ESMC
SCh, > SC,
v RAp
reference object
PR: C,,, M —» C.,M,,
PR: SCp, C@, Mc: - SC. Checking this proof is a
PR: SM¢, Gy, Mg = SMyy, purely syntactic operation

PR: C;, MZ,SMZ,SC — RAp
G RA,

Formal proofs

* We can now formally verify components in isolation
against their assume/guarantee specifications:
e Reording buffer
* Hierarchical cache
* Processor, memory, etc.

* These are simple abstract component models, intended
to show that the specification has the intended
implementations.

* Show key property that protocol is insensitive to message re-
ordering.

* In the process, specification was corrected.

Because our assume/guarantee specification is composable, we
know that hierarchies built from these components implement a
weakly consistent shared memory.

Compositional testing

* From an assume/guarantee specification, we can
automatically generate a test environment.

check | . =— 2 =—»_| check
gecnog?gte —| RTL |e——" |gefiBTHe

reference object

e Tested two RTL level components with randomized
generation using Z3:
e L2 cache bank
* Snooping hub

Testing results

 Compositional testing revealed currency errors in
the RTL in under 1s (< 100 cycles)

* Unit testing provides much greater flexibility in covering
internal corner cases

* Randomized specification-based testing reduces bias

e Latent bugs

* Most bugs could not be stimulated in integration test
e Latent bugs affect re-usability

* Importance of composability
e All system-level errors exposed to unit testing

e Gain confidence that components can be assembled into
arbitrary configuration.

Conclusion

* Good composable specification is such that:
e Correct component imply correct system
* The proof of this is efficiently checkable

» Global properties (such as memory consistency)
» Reference object + temporal assume/guarantee
* Allows local specification of interface semantics

 Composable TileLink interface spec provides:
* Documentation of the interface
 Ability to reason formally about specification
 Efficient and rigorous test to find latent bugs

Composable specifications provide a way to formal verification
experts to provide value in an environment where most engineers do
not have formal skills.

Specification as a social process

* The specification develops over time in
collaboration with the system architects.
* Ambiguities in informal specs must be resolved.

* Initial formal spec almost certainly does not reflect
designers intention.

* Mismatch with implementation may indicate properties
should be strengthened or weakened for efficiency.

e Over time the formal spec becomes a valuable
document.
* Encapsulates design knowledge.
* Allows rigorous testing and verification.

