
Extracting behaviour from an executable
instruction set model

Brian Campbell Ian Stark

REMS project rems.io

EPSRC grant EP/K008528/1

FMCAD, October 6 2016

1 / 31

http://rems.io/

Introduction

Previously developed automated test generation for executable ISA
models in HOL4 [FMICS 2014].

Want to automate extraction of instruction behaviour—

1. constraints for execution

2. results of execution

—from model in HOL4 theorem prover for new targets.

Successfully implement symbolic execution in HOL4, reusing its
standard symbolic evaluation features.

Applied to simple MIPS model and experimental CHERI processor

2 / 31

Motivation: testing ISA models

Automatic randomised test generation in HOL4:

Generate instruction sequence
↓

Extract instruction behaviour from model
↓

Calculate sequence’s constraints and effects
↓

Solve constraints to build test (SMT)
↓

Add test harness

Previously:

+ Reused stepLib verification library for instruction behaviour

− Library needs to be written for new models

− Library skips some behaviour (exceptions, unaligned accesses)

3 / 31

Motivation: testing ISA models

Automatic randomised test generation in HOL4:

Generate instruction sequence
↓

Extract instruction behaviour from model
↓

Calculate sequence’s constraints and effects
↓

Solve constraints to build test (SMT)
↓

Add test harness

Previously:

+ Reused stepLib verification library for instruction behaviour

− Library needs to be written for new models

− Library skips some behaviour (exceptions, unaligned accesses)

4 / 31

Motivation: Testing CHERI

Experimental MIPS-compatible design with capability security
extensions:

I Lots of new instructions, exceptions

I ISA model used for architectural exploration

I Bluespec design for processor

provide motivation for testing

Plain MIPS model has stepLib

I CHERI more than twice as large

I also more complete (e.g., memory)

I stepLib not ported

5 / 31

Model example: MIPS 32-bit signed immediate addition

L3 domain specific language, compiled to HOL4:

dfn’ADDI (rs,rt,immediate) =

(λstate.
(let s =

if NotWordValue (FST (GPR rs state)) then

SND (raise’exception (UNPREDICTABLE "ADDI: NotWordValue")

state)

else state

in

let v = (32 >< 0) (FST (GPR rs s)) + sw2sw immediate

in

if word_bit 32 v 6= word_bit 31 v then SignalException Ov s

else write’GPR (sw2sw ((31 >< 0) v),rt) s))

I State threaded through definition

I 64-bit behaviour unspecified

I Overflow processor exception

6 / 31

Model example: MIPS 32-bit signed immediate addition

L3 domain specific language, compiled to HOL4:

dfn’ADDI (rs,rt,immediate) =

(λstate.
(let s =

if NotWordValue (FST (GPR rs state)) then

SND (raise’exception (UNPREDICTABLE "ADDI: NotWordValue")

state)

else state

in

let v = (32 >< 0) (FST (GPR rs s)) + sw2sw immediate

in

if word_bit 32 v 6= word_bit 31 v then SignalException Ov s

else write’GPR (sw2sw ((31 >< 0) v),rt) s))

I State threaded through definition

I 64-bit behaviour unspecified

I Overflow processor exception

7 / 31

Pre-existing library: addiu $1,$2,3

[¬if word_bit 31 (s.gpr 2w) then (63 >< 32) (s.gpr 2w) 6= 0xFFFFFFFFw

else (63 >< 32) (s.gpr 2w) 6= 0w,

s.MEM s.PC = 36w, s.MEM (s.PC + 1w) = 65w, s.MEM (s.PC + 3w) = 3w,

s.MEM (s.PC + 2w) = 0w,

(1 >< 0) s.PC = 0w, s.exception = NoException]

` NextStateMIPS s =

SOME

(s with

<|PC := s.PC + 4w;

gpr := (1w =+ sw2sw ((31 >< 0) (s.gpr 2w) + 3w)) s.gpr|>)

I Hypotheses contain assumptions, well-definedness constraints

` Stylised conclusion: next = series of record updates

I One theorem per branch

A rough rule-based operational semantics

8 / 31

Pre-existing library implementation

Semi-automatic

I Assumptions and cases fed in manually

I Primarily uses symbolic evaluation
I Builds up results for

I each instruction implementation
I instruction fetch
I decode

then combines them into next step function

For faster development, we want to

I Avoid writing per-instruction information

I Case split automatically

I Avoid specifying intermediate results

9 / 31

Symbolic execution in HOL4

Symbolic evaluation

I general computation rules (including bitvectors, . . .)

I specialisation, e.g., restricting memory accesses

I single result, leaves the structure intact

Symbolic state

I Set of rewrites, one per field

Symbolic execution

I follows threading of state

I case splits at conditionals, pattern matching

I discard unspecified/uninteresting cases

I keeps path condition in hypotheses

I one result per path

10 / 31

Symbolic evaluation

Uses

I HOL4 theories for booleans, bitvectors, naturals, integers,
datatypes, . . .

I custom conversions to
I FOR loops only once bound known
I extra bitvector simplification

I model-specific conversions which

? may introduce hypotheses to limit behaviour
I simplify memory mapping
I inject instructions into memory

Instruction injection uses rewrite generated by applying symbolic
execution to instruction fetch function.

11 / 31

Symbolic execution

Recursive procedure; described below with rules:

H, S ` t (H ′, t ′)

H General hypotheses
incorporates path condition

S Per-field state information
(equations)

t Source term (also u, v below)

One result (H ′, t ′) per path

State always appears to the right:

H,S ` u (H ′, u′)

H, S ` (t, u) (H ′, (t, u′))
Pair

12 / 31

Symbolic execution

For let, separate ordinary data from state:

H, S ` t (H ′, (t ′, s ′)) ∀i . H ′
i ,S / s ′i ` u[t ′i/x] (H ′′

i , u
′
i)

H,S ` let (x , s) = t in u
⋃
i

(H ′′
i , u

′
i)

Let

S has per-field state information, S / s updates symbolic state

(H, t),S ` u (H ′, u′) (H,¬t),S ` v (H ′′, v ′)

H, S ` if t then u else v (H ′, u′) ∪ (H ′′, v ′)
Cond

Similar rule for pattern matching

13 / 31

Symbolic execution

Function application unfolds the definition

c x1 . . . xn+1 := t H, S ` v (H ′, v ′)

∀i . H ′
i , S ` t[u1/x1, . . . , un/xn, v

′
i /xn+1] (H ′′

i , t
′
i)

H,S ` c u1 . . . un v
⋃
i

(H ′′
i , t

′
i)

App

H,S ` raise’exception t u ∅
Undef

Other unwanted constants are handled similarly

14 / 31

Soundness and (in)completeness

Soundness

I By construction:
H, S ` t (H ′, t ′)

produces theorems for each i ,

H ′
i ` t = t ′i

Completeness
Incomplete by construction:

I e.g., deliberately simplify memory accesses

Complete up to specialisation?

I No formal results

I Systematic construction
avoids overly strong assumptions about cases

15 / 31

Example: addi $1,$2,3

Hypotheses

Term

dfn’ADDI (2w,1w,3w) s

State only changes at the end

16 / 31

Example: addi $1,$2,3

Hypotheses

Term

let s =

if NotWordValue (FST (GPR 2w state)) then

SND (raise’exception (UNPREDICTABLE "ADDI: NotWordValue") state)

else state

in

let v = (32 >< 0) (FST (GPR 2w s)) + 3w

in

if word_bit 32 v 6= word_bit 31 v then SignalException Ov s

else write’GPR (sw2sw ((31 >< 0) v),1w) s

17 / 31

Example: addi $1,$2,3

Hypotheses

Term

if NotWordValue (FST (GPR 2w state)) then

SND (raise’exception (UNPREDICTABLE "ADDI: NotWordValue") state)

else state

(First part of let, rest on stack)

18 / 31

Example: addi $1,$2,3

Hypotheses

NotWordValue (s.c_gpr 2w)

Term

SND (raise’exception (UNPREDICTABLE "ADDI: NotWordValue") state)

(First branch of if, first part of let, rest on stack)

19 / 31

Example: addi $1,$2,3

Hypotheses

NotWordValue (s.c_gpr 2w)

Term

raise’exception (UNPREDICTABLE "ADDI: NotWordValue") state

(First part of if, let, rest on stack)

Undefined - discard case

20 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w)

Term

state

(Second part of if, first of let, rest on stack)

21 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w)

Term

let v = (32 >< 0) (FST (GPR 2w state)) + 3w

in

if word_bit 32 v 6= word_bit 31 v then SignalException Ov state

else write’GPR (sw2sw ((31 >< 0) v),1w) state

(Second part of let)

22 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w)

Term

if word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) 6=
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w) then

SignalException Ov state

else

write’GPR (sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)),1w) state

(let evaluated)

23 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w),

word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) 6=
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

Term

SignalException Ov state

(First branch)

Processor exception - choose to discard case

(Can do processor exceptions, but not on one slide)

24 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w),

word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) =
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

Term

write’GPR (sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)),1w) state

(Second branch)

25 / 31

Example: addi $1,$2,3

Hypotheses

¬NotWordValue (s.c_gpr 2w),

word_bit 32 ((32 >< 0) (s.c_gpr 2w) + 3w) =
word_bit 31 ((32 >< 0) (s.c_gpr 2w) + 3w)

Term

((),

state with

c_gpr := (1w =+ sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)))

state.c_gpr)

Final result: register 1 updated by signed addition

26 / 31

Example: Symbolic state update (S / s)

Per-field state information S consists of equations:

state.c_gpr = s0.c_gpr

state.c_state = s0.c_state with c_lo := NONE

...

relating current state state to initial state s0

The update for addi $1,$2,3 is

state with

c_gpr := (1w =+ sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)))

state.c_gpr)

apply per-field to get

newstate.c_gpr =

(1w =+ sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w))) s0.c_gpr)

newstate.c_state = s0.c_state with c_lo := NONE

...

27 / 31

Example: Symbolic state update (S / s)

Per-field state information S consists of equations:

state.c_gpr = s0.c_gpr

state.c_state = s0.c_state with c_lo := NONE

...

relating current state state to initial state s0

The update for addi $1,$2,3 is

state with

c_gpr := (1w =+ sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w)))

state.c_gpr)

apply per-field to get

newstate.c_gpr =

(1w =+ sw2sw ((31 >< 0) ((32 >< 0) (s.c_gpr 2w) + 3w))) s0.c_gpr)

newstate.c_state = s0.c_state with c_lo := NONE

...

28 / 31

Performance

Compare existing library with combined approach on ‘plain’ MIPS:

I behaviour extraction much longer (old 0.23s, new 3.16s)

I but only rises to 17% of total test generation time

I even without caching, etc

(times median over 500 8-instruction tests)

CHERI times rise again (32.3s; 33% of total test generation time)

Still acceptable for batch production

29 / 31

Results

Found model bugs

I in instructions we couldn’t test before

I on processor exceptions (esp. unintended writeback)

Successfully

I generates tests automatically

I less than two minutes per test

? tracks new versions of the model with few adjustments

Instruction generation and harness generation phases still require
manual maintenance; symbolic execution is robust against changes.

30 / 31

Summary

Automated extraction of instruction behaviour from an executable
model

I combining prover’s symbolic evaluation with symbolic
execution

I reducing amount of model-specific input required

I with acceptable performance cost, and scope for improvement

Successfully applied to large CHERI ISA model, finding bugs in
model and processor design.

HOL4 turns out to be a good environment for symbolic execution

31 / 31

	Introduction
	Motivation: testing ISA models
	Motivation: Testing CHERI
	Model example: MIPS 32-bit signed immediate addition
	Pre-existing library: addiu $1,$2,3
	Pre-existing library implementation
	Symbolic execution in HOL4
	Symbolic evaluation
	Symbolic execution
	Symbolic execution
	Symbolic execution
	Soundness and (in)completeness
	Example: addi $1,$2,3
	Example: Symbolic state update (S s)
	Performance
	Results
	Summary

