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TOYOTA V&V Perspective

Automobile system becomes more complex and larger in scale.

The num. of NHTSA recalls
related to control software
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Purpose: Establish prevention process with advanced V&V



Applying model checking to our CPS

An issue occurred when we were developing.
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In a software module of linear sensor calibration

[Tomoya Yamaguchi,
Embedded System Symposium 2012,
(Japanese) .]

An-issue happened
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| applied model checking to this issue and analyzed.



Applying model checking to our CPS
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The problem of applying model checking

@#’roblem 1 Mapping system level requirement to module]
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V&V object: Injected issue on actual Engine SILS
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line of C code




V&V object: Injected issue on actual Engine SILS
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Controller has 300,000 v Closed loop
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Corner case issue injected]

Other modules must be in
specific combination of states

Property: actuator output < 150




Overview of our methodology
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Problem.1 Mapping system level requirement to module

We have system level requirement

What is pre-condition of input?
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Counter measure for problem 1:Requirement Mining

[Xiaoqing Jin, etal., HSCC 2013]

Countelar Tasified Simulation
€Xxamp'e model
4 )
Candidate : —
Parametgr > requirement > Slmulat.lqn Based
synthesis (STL) Falsification
L y, e
T 1 Not falsified
" Template ) i;(fi;r;;i’f?..,wmw g Inferred b
requirement| mmes = (Tmaz1,-- -, Tmaz n) requirement
\ (PSTL) D [] (z\l (Tmin i < ) A (T < Tmae 3))) \_ (STL) )

0((=100 < x;) A (xy < 100)..) yy,

Apply requirement mining to mine pre-condition (range)
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Result of using module level requirement

Counterexample comes from model checking

, No range With range mining
Input variable

counterexample range counterexample

waterTemp [C] 89.4| [-30.0, 100.0] 90.0
atmosphericPressure [bar] 3.5 [0.0, 1.0] 1.0
gear 5 [0, 6] / 6
gearHoldFlag 0 )o{/ / 0
idlFlag 0 0. ¥ / 0
catalystTempHIGHflag 1 o1/ 1
fuelCutFlag 0 /10,11 |/ 0
engRom [rom] 2600.0| [04,5310.9] | 2600.0
/ / \\l/_

false positive case is avoided by using range mining
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Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples
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Pre-condition of module is extracted P

by requirement mining
Now model checking is more accurate!
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Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples




Problem 2 Mapping counterexamples found at the module level

to system-level counterexamples

['

s this module level counterexample from model checking
false positive or true positive?
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Generally, it needs much work-hour,
Hi-level V&V skill and system knowledge
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Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples

WaterTemp> QirTemp>

controller

module module |

Hypothesis: Module level CE is a true positive,
when system level CE containing module level CE is found




Simulation—-Based Verification with cost function

[Control Pointl . Black-box
parameters optimizer
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Drive system to module level CE using Simulation—-Based Verification

Want to falsify property:

(minimize distance t

o CE)

p(x) =0O

Z(xi(t) _2)2 > e)
=1

15



Found system level corner case issue
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Find system level violation
actuator output < 150
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Comparison with just Simulation—-based Falsification
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mining
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W software
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significantly more effective than using just Y
software Model checking or just Search—-bhased falsification

17



Conclusion

- We propose combined methodology
(= Requirement Mining + Model Checking
+ Simulation-based verification)

« New methodology is applied to production closed loop CPS

« Our combined methodology can be significantly
more effective than using just software Model checking
or just Simulation—-based verification

Special thanks

Breach: Breach is provided by U.C. Berkeley, Prof. Sanjit Seshia and
Dr. Alexandre Donzé. Breach has flexible extendibility

for the requirement mining and the simulated—base verification.

CBMC: CBMC is provided by Univ. Oxford, Prof. Daniel Kroening and
Dr. Martin Brain. CBMC is a sophisticated tool and was greatly
helpful for our case study.

SMiL: Toyota in—house engine SILS. Fujitsu-ten provides

and also supports us well.

18



