Combining Requirement Mining,
Software Model Checking
and Simulation-Based Verification
for Industrial Automotive Systems

2016/10/06

Tomoya Yamaguchi and Tomoyuki Kaga
TOYOTA MOTOR CORPORATION
Alexandre Donzé and Sanjit A. Seshia
University of California, Berkeley

TOYOTA V&V Perspective

Automobile system becomes more complex and larger in scale.

The num. of NHTSA recalls
related to control software

20 ..
'
10 .. Automotive System is rea"y
.............. JPrOdUCtion
v Cyber Physical System
v Closed loop controller
00 ‘10

Purpose: Establish prevention process with advanced V&V

Applying model checking to our CPS

An issue occurred when we were developing.

VALVENATI SR ST

Under a rare
operating pattern

Linear actuator

????????

Engine rpm

In a software module of linear sensor calibration

[Tomoya Yamaguchi,
Embedded System Symposium 2012,
(Japanese) .]

An-issue happened

\\l/,

| applied model checking to this issue and analyzed.

Applying model checking to our CPS

Making property

Revising model

e P T
_—

—

—-—

Revising property
Making model\’

Executing
model checking
Total
Work hour

560min

. Mapping
7 trails counterexample

.

<. -
[Making/ revising property: 110 min J =

Mapping counterexample: 280 min for just 1 module

The problem of applying model checking

@#’roblem 1 Mapping system level requirement to module]

|module [+

m
/

troller

!
Imodule |- A module |

[P

roblem 2 Mapping counterexamples found at the module level

plant

N

to system-level counterexamples

|

5

V&V object: Injected issue on actual Engine SILS

@Te@

v

v'Production
v CPS
v'Closed loop

|module f+—

controller

o)

Controller has 300,000

line of C code

V&V object: Injected issue on actual Engine SILS

@erlTeﬁ ’ijgf;g"“w"

Controller has 300,000 v Closed loop
line of C code

Y
Imodule |<J controller

!
|module ——{module |

Corner case issue injected]

Other modules must be in
specific combination of states

Property: actuator output < 150

Overview of our methodology

Breach - oo
1. Pre-condition |

(range) mining

Pre-condition for|
_software module |

Vv sov/
2. Software!CBMC
model checking

module k< controller

module »y module

-——>

N oo o o o o o o o o o e e o e e e = = = = -

[Module level] |
e

| counterexampl TR ' S .

| v o ‘.
| 3. Simulation-Based|_! Dty - |
: Verlfgatlon@ :®_. :
| System level =
' | counterexample ' g

Problem.1 Mapping system level requirement to module

We have system level requirement

What is pre-condition of input?

enso

module }

¥

module

controller

»y module

» module |«

)

I___Mi
| 72?7
S el ey
| || '
=, ?‘m I
121 |
|2|: module|
:Q.:, |

I I
1 |

Property to check

. R
| Hard to map system level requirement to module level | =

9

Counter measure for problem 1:Requirement Mining

[Xiaoqing Jin, etal., HSCC 2013]

Countelar Tasified Simulation
€Xxamp'e model
4)
Candidate : —
Parametgr > requirement > Slmulat.lqn Based
synthesis (STL) Falsification
L y, e
T 1 Not falsified
" Template) i;(fi;r;;i’f?..,wmw g Inferred b
requirement| mmes = (Tmaz1,-- -, Tmaz n) requirement
\ (PSTL) D [] (z\l (Tmin i <) A (T < Tmae 3))) _ (STL))

0((=100 < x;) A (xy < 100)..) yy,

Apply requirement mining to mine pre-condition (range)
10

Result of using module level requirement

Counterexample comes from model checking

, No range With range mining
Input variable

counterexample range counterexample

waterTemp [C] 89.4| [-30.0, 100.0] 90.0
atmosphericPressure [bar] 3.5 [0.0, 1.0] 1.0
gear 5 [0, 6] / 6
gearHoldFlag 0)o{/ / 0
idlFlag 0 0. ¥ / 0
catalystTempHIGHflag 1 o1/ 1
fuelCutFlag 0 /10,11 |/ 0
engRom [rom] 2600.0| [04,5310.9] | 2600.0
/ / \\l/_

false positive case is avoided by using range mining

11

Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples

(TTT) Foawmesv e
Pre-condition of module is extracted P

by requirement mining
Now model checking is more accurate!

/
Imodule [+ oller
!
|module — A{module |

Caitou)

N

Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples

Problem 2 Mapping counterexamples found at the module level

to system-level counterexamples

['

s this module level counterexample from model checking
false positive or true positive?

|

G,

‘modu|q roller

T\
|module

module |

Generally, it needs much work-hour,
Hi-level V&V skill and system knowledge

13

Problem 2 Mapping counterexamples found at the module level
to system-level counterexamples

WaterTemp> QirTemp>

controller

module module |

Hypothesis: Module level CE is a true positive,
when system level CE containing module level CE is found

Simulation—-Based Verification with cost function

[Control Pointl . Black-box
parameters optimizer

l

Control Point

base signal generator

ﬁnput signal u(t)

‘/\\//

Counter
T F (Example
Quantitative
function p
4

STL 4_[Propert]
evaluator

~

\J

>/

Simulation

! [

Outpy/ 1l x(t))
1

I~

Drive system to module level CE using Simulation—-Based Verification

Want to falsify property:

(minimize distance t

o CE)

p(x) =0O

Z(xi(t) _2)2 > e)
=1

15

Found system level corner case issue

-]
=

pedalangle[4]
ES [=3
[=] [=]

=3
=

0

i

modutel< controller

module

»y module

W)
e

\\7

Find system level violation
actuator output < 150

actuator

100
' v
i 50
[+
1 &
1 2 0
A
120
40
20
0 W

V¥ Founded false case

B Violation area of post-condition

target

] 5 10 15 20 25
time[sec]

16

Comparison with just Simulation—-based Falsification

120 -
100 OPre-condition
mining
80 -
W software
60 model cheking
40 1 = Simulation-
based
20 - falsification
0 '
[min] Post-condition only combined methodology
falsification s

significantly more effective than using just Y
software Model checking or just Search—-bhased falsification

17

Conclusion

- We propose combined methodology
(= Requirement Mining + Model Checking
+ Simulation-based verification)

« New methodology is applied to production closed loop CPS

« Our combined methodology can be significantly
more effective than using just software Model checking
or just Simulation—-based verification

Special thanks

Breach: Breach is provided by U.C. Berkeley, Prof. Sanjit Seshia and
Dr. Alexandre Donzé. Breach has flexible extendibility

for the requirement mining and the simulated—base verification.

CBMC: CBMC is provided by Univ. Oxford, Prof. Daniel Kroening and
Dr. Martin Brain. CBMC is a sophisticated tool and was greatly
helpful for our case study.

SMiL: Toyota in—house engine SILS. Fujitsu-ten provides

and also supports us well.

18

