Formal Verification of Division and Square Root Implementations, an Oracle Report

David L. Rager, Jo Ebergen, Dmitry Nadezhin, Austin Lee, Cuong Kim Chau, Ben Selfridge

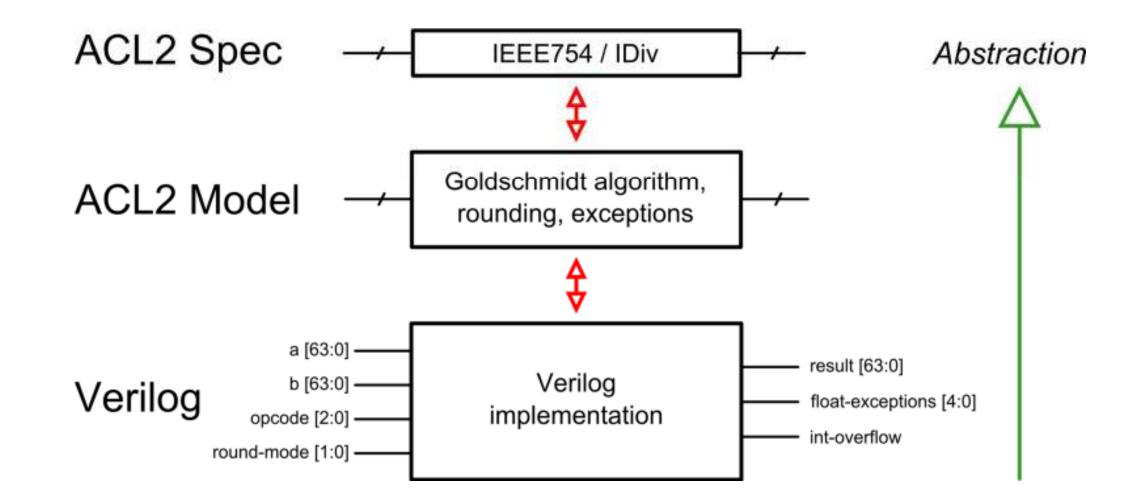
October 6, 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Goal

- Verify data-path for new implementations of:
 - 32/64-bit floating-point division and square root
 - fdivd
 - fdivs
 - fsqrtd
 - fsqrts
 - 32/64-bit integer divide
 - udivx
 - sdivx
 - udiv
 - sdiv

The Problem and Key Result



Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Tools

- ACL2
 - Programming language written in subset of Lisp
 - Theorem prover written in ACL2
 - Proof engine used at AMD, IBM, Centaur, Motorola, Intel
 - 2005 ACM Software System Award
 - Maintained at Univ. of Texas with help from community
- ACL2 Books (~5500)
 - A "book" is a library of functions and lemmas
 - Arithmetic, RTL, security, proof and definition utilities
 - Includes a Verilog parser and hardware symbolic simulator
- Support Tools: SAT solvers, waveform viewer

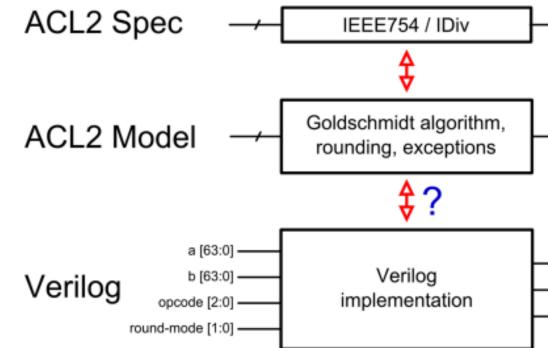
ORACLE

Related Work

- Symbolic trajectory evaluation (Intel)
 - C.-J. H. Seger and R. E. Bryant, "Formal verification by symbolic evaluation of partiallyordered trajectories," Formal Methods in System Design, vol. 6, no. 2, pp. 147–189, Mar. 1995.
- Floating-point verification
 - D. Russinoff, "A mechanically checked proof of IEEE compliance of the floating-point" multiplication, division, and square root algorithms of the AMD-K7TM processor," *London* Mathematics Society Journal of Computation and Mathematics, no. 1, pp. 148–200, 1998.
 - J. O'Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, "Formally verifying IEEE compliance of floating-point hardware," Intel Technology Journal, vol. 3, no. 1, pp. 1–14, 1999.
- Hardware verification and tools
 - A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, "A flexible formal verification framework" for industrial scale validation," in Formal Methods and Models for Codesign (MEMOCODE), 2011 9th IEEE/ACM International Conference on, July 2011, pp. 89–97.

Outline

- Intro
- Algorithm extraction
- Algorithm verification
- Reflections and challenges



 Goal: raise level of abstraction from low-level bit operations to higher-level operations like *, +, and ~ of *m*-bit operands

ORACLE

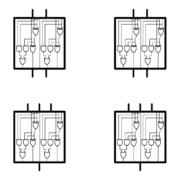
Abstraction

result [63:0]

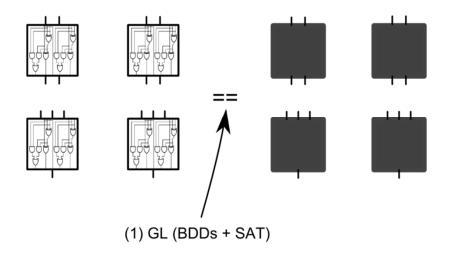
float-exceptions [4:0]

int-overflow

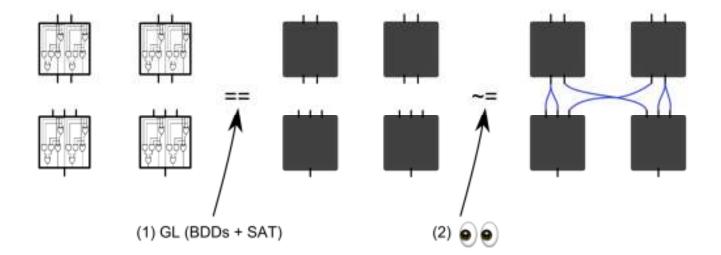
- Decompose circuit into appropriately-sized blocks
- Choose modules of interest
 - For example:
 - Tree of carry-save adders (CSAs)
 - Nest of Booth encoders



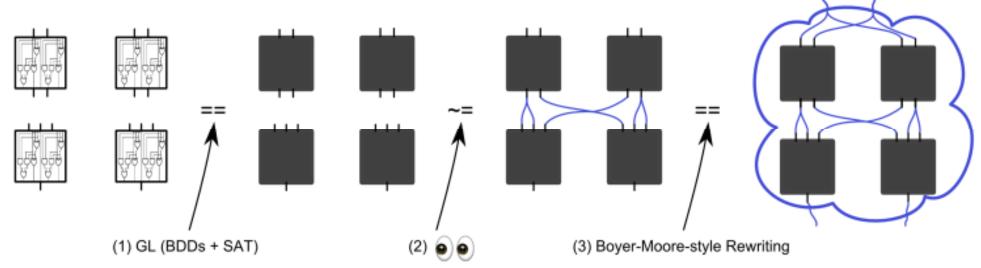
- Decompose circuit into appropriately-sized blocks
- (1) Black-box chosen modules
 - Write specification for those modules in ACL2
 - Automatically verify the validity of those specifications using GL
 - GL uses BDDs and SAT solvers "under the hood"



- Decompose circuit into appropriately-sized blocks
- (2) Create ACL2 version of the interconnect
 - For example:
 - The wires that connect the CSAs are connected in a particular way
 - ACL2 version of interconnect is unverified at this point

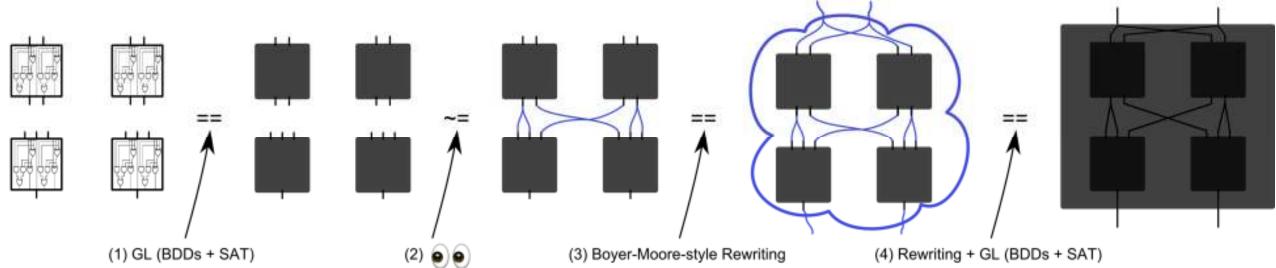


- Decompose circuit into appropriately-sized blocks
- (3) Prove a higher-level specification
 - Define a higher-level specification for the connected modules
 - Prove specification's validity using Boyer-Moore rewriting
 - For example:
 - sum+carry*2 = a+b+c+d+e+f+g+h

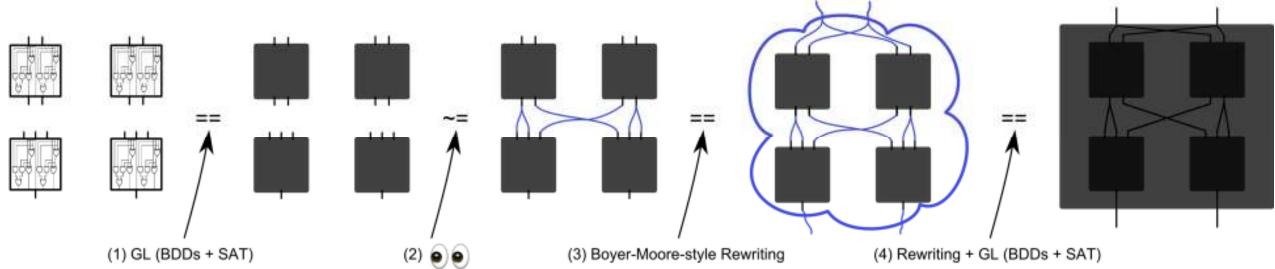


10

- Decompose circuit into appropriately-sized blocks
- (4) Black-box your larger piece of circuitry
 - Prove that the ACL2 interconnect is the same as the Verilog interconnect
 - I.E., that the Verilog wires really do connect the CSA's that way!

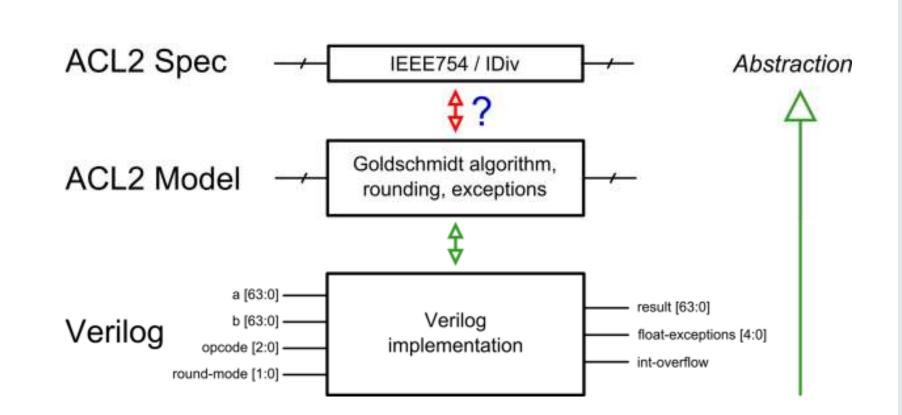


- Decompose circuit into appropriately-sized blocks
- (4) Black-box your larger piece of circuitry
 - Black-boxing doesn't scale using Esim and GL
 - Use SV (successor to Esim) in our latest work
 - Scales better but we still have problems too large



Outline

- Intro
- Algorithm extraction
- Algorithm verification
- Reflections and challenges



• Goal: show that the Goldschmidt algorithm (consisting of operations like *, +, and ~ of *m*-bit operands), rounding, and exceptions implement IEEE 754

ORACLE

IEEE754 Specification in ACL2

- IEEE754 Standard on Floating-Point Arithmetic
 - 80-page document written in English
- Our IEEE 754 specification in ACL2 includes
 - Div, sqrt, add, mul, and fused mul-add
 - All special values (+/- 0, +/-Infinity, NaNs)
 - All exception flags
 - Denormals
 - Four rounding modes
 - Customization for NaN values
- Validated our spec against millions of test vectors from Oracle's test suite

Goldschmidt Algorithm for Division

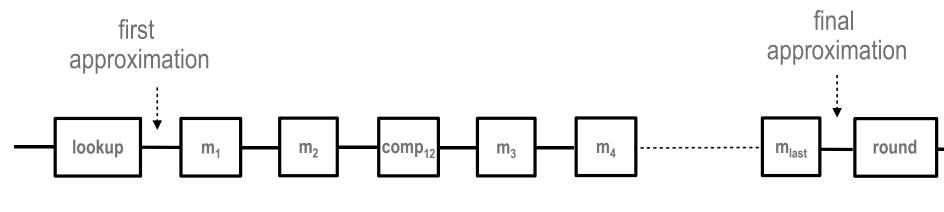
Idea: choose T, r_i such that

$$\frac{A}{B} * \frac{T}{T} * \frac{r_0}{r_0} * \frac{r_1}{r_1} * \frac{r_2}{r_2} * \frac{r_3}{r_3} \dots \xrightarrow{-}$$

- Precision doubles with each iteration
- Algorithm:

Q 1

Main Proof Obligation



-max_error < final_approx - A/B < max_error ?

- Each step introduces an error
 - Lookup: $T \sim 1/B$. Define relative error *u* by T = 1/B u/B
 - Each multiplication, except last, is truncated from 2*M* to *M* bits. Error eps_i is in [0, 2^{-M})
 - 2 d_{i+1} is implemented by taking one's complement of d_{i+1} . This introduces fixed error 2^{-M}
- Golden question: Is error in final approximation small enough to yield an IEEE754 answer after rounding is applied?

s in [0, 2^{-M}) fixed error 2^{-M} ⁄ield an

Error Analysis

- Express (final approx A/B) as a multivariate polynomial in u (lookup error) and eps_i (truncation error)
- This polynomial can be generated symbolically from the algorithm
- Given the interval for each variable, compute interval for (final approx A/B) using methods from interval arithmetic
- Example: If lookup error u was only error, then final error for, e.g., final approx = n_2 can be expressed as

final approx - $A/B = A^*T^*(-u^4 - u^5 - u^6 ...) + inc$

with *u* in $[-2^{-k}, 2^{-k}]$ and $A^*T < 2$.

Results of Error Analysis

• Proved main obligation using interval arithmetic

```
-max_error < final_approx - A/B < max_error
```

- We first implemented interval arithmetic in Java[™] and later verified computations in ACL2
- We then experimented with reduced lookup tables to see if main obligation still holds.
- This approach reduced the lookup table
 - for division by 50%
 - for square root by 75%

obligation still

Reflections and Challenges

- Approach is very similar to Symbolic Trajectory Evaluation (STE)
 - Works very well for data-path verification
 - Technical challenges involving Step 4 of Extraction (recomposition)
- Invariant-based methods
 - More thorough but more time-consuming
 - Necessary for verifying control logic
 - Can community make invariant-based frameworks and methodologies more efficient for users?
 - Currently too time-consuming for industry to use on major products with deadlines
- A dream: automatically infer higher-level specifications for Verilog implementations

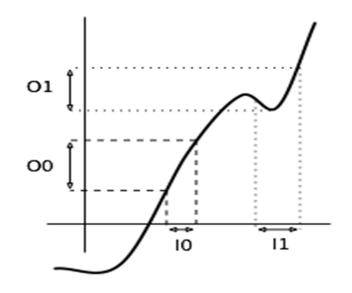
ORACLE®

Backup Slides

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Interval Arithmetic Intermezzo

- Function of single input variable
 - For each input interval, compute output interval



 Computing the output interval for multivariate polynomials is similar to computing the output interval for univariate polynomials

