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Goal

• Verify data-path for new implementations of: 

– 32/64-bit floating-point division and square root

• fdivd

• fdivs

• fsqrtd

• fsqrts

– 32/64-bit integer divide

• udivx

• sdivx

• udiv

• sdiv
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The Problem and Key Result
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Tools

• ACL2

– Programming language written in subset of Lisp

– Theorem prover written in ACL2

• Proof engine used at AMD, IBM, Centaur, Motorola, Intel

• 2005 ACM Software System Award

– Maintained at Univ. of Texas  with help from community

• ACL2 Books (~5500)

– A “book” is a library of functions and lemmas

• Arithmetic, RTL, security, proof and definition utilities

– Includes a Verilog parser and hardware symbolic simulator

• Support Tools: SAT solvers, waveform viewer
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Related Work

• Symbolic trajectory evaluation (Intel)

– C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of partially-
ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2, pp. 147–189, Mar. 
1995.

• Floating-point verification

– D. Russinoff, “A mechanically checked proof of IEEE compliance of the floating-point 
multiplication, division, and square root algorithms of the AMD-K7TM processor,” London 
Mathematics Society Journal of Computation and Mathematics, no. 1, pp. 148–200, 1998.

– J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying IEEE compliance of 
floating-point hardware,” Intel Technology Journal, vol. 3, no. 1, pp. 1–14, 1999.

• Hardware verification and tools

– A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A flexible formal verification framework 
for industrial scale validation,” in Formal Methods and Models for Codesign (MEMOCODE), 
2011 9th IEEE/ACM International Conference on, July 2011, pp. 89–97.
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Outline

• Intro

• Algorithm extraction

• Algorithm verification

• Reflections and challenges

• Goal: raise level of abstraction from low-level bit operations to higher-level 
operations like *, +, and ~ of m-bit operands
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• Choose modules of interest

– For example:

• Tree of carry-save adders (CSAs)

• Nest of Booth encoders
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (1) Black-box chosen modules

– Write specification for those modules in ACL2

– Automatically verify the validity of those specifications using GL

• GL uses BDDs and SAT solvers “under the hood”
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (2) Create ACL2 version of the interconnect 

– For example:

• The wires that connect the CSAs are connected in a particular way

– ACL2 version of interconnect is unverified at this point
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (3) Prove a higher-level specification

– Define a higher-level specification for the connected modules

– Prove specification’s validity using Boyer-Moore rewriting

– For example:

• sum+carry*2 = a+b+c+d+e+f+g+h
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (4) Black-box your larger piece of circuitry

– Prove that the ACL2 interconnect is the same as the Verilog interconnect

• I.E., that the Verilog wires really do connect the CSA’s that way!
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Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (4) Black-box your larger piece of circuitry

– Black-boxing doesn’t scale using Esim and GL

– Use SV (successor to Esim) in our latest work

• Scales better but we still have problems too large
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Outline

• Intro

• Algorithm extraction

• Algorithm verification

• Reflections and challenges

• Goal: show that the Goldschmidt algorithm (consisting of operations like *, +, 
and ~ of m-bit operands), rounding, and exceptions implement IEEE 754
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IEEE754 Specification in ACL2

• IEEE754 Standard on Floating-Point Arithmetic 

– 80-page document written in English

• Our IEEE 754 specification in ACL2 includes

– Div, sqrt, add, mul, and fused mul-add

– All special values (+/- 0, +/-Infinity, NaNs)

– All exception flags

– Denormals

– Four rounding modes

– Customization for NaN values

• Validated our spec against millions of test vectors from Oracle’s test suite  
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Goldschmidt Algorithm for Division

• Idea: choose T, ri such that

• Precision doubles with each iteration

• Algorithm:
T = table_lookup(B);
d0 = B*T; n0 = A*T;
r0 = 2 - d0;
for (i=0; i < MAX; ++i) {

di+1 = di*ri; ni+1 = ni*ri;
ri+1 = 2 - di+1;

}
final_approx = nMAX + inc
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Main Proof Obligation

• Each step introduces an error

– Lookup:   T ~ 1/B. Define relative error u by   T = 1/B - u/B

– Each multiplication, except last, is truncated from 2M to M bits.   Error epsi is in [0, 2
-M)

– 2 - di+1 is implemented by taking one’s complement of di+1. This introduces fixed error  2
-M

• Golden question: Is error in final approximation small enough to yield an 
IEEE754 answer after rounding is applied?
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-max_error  <   final_approx  - A/B <   max_error
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Error Analysis

• Express (final_approx - A/B) as a multivariate polynomial in u (lookup error) and 
epsi (truncation error)

• This polynomial can be generated symbolically from the algorithm

• Given the interval for each variable, compute interval for  (final_approx - A/B)  
using methods from interval arithmetic

• Example: If lookup error u was only error, then final error for, e.g., final_approx = 
n2 can be expressed as  

final_approx - A/B = A*T*(-u4 -u5 -u6 …) + inc

with u in [-2-k, 2-k] and A*T < 2.
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Results of Error Analysis

• Proved main obligation using interval arithmetic

• We first implemented interval arithmetic in JavaTM and later verified 
computations in ACL2  

• We then experimented with reduced lookup tables to see if main obligation still 
holds.

• This approach reduced the lookup table

– for division by 50%

– for square root by 75%

-max_error  <   final_approx  - A/B <   max_error  
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Reflections and Challenges

• Approach is very similar to Symbolic Trajectory Evaluation (STE)

– Works very well for data-path verification

– Technical challenges involving Step 4 of Extraction (recomposition)

• Invariant-based methods

– More thorough but more time-consuming

– Necessary for verifying control logic

– Can community make invariant-based frameworks and methodologies more efficient for 
users?

• Currently too time-consuming for industry to use on major products with deadlines

• A dream: automatically infer higher-level specifications for Verilog implementations
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Interval Arithmetic Intermezzo

• Function of single input variable

– For each input interval, compute output interval

• Computing the output interval for multivariate polynomials is similar to computing 
the output interval for univariate polynomials
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