
Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Formal Verification of Division and Square Root
Implementations, an Oracle Report

David L. Rager, Jo Ebergen, Dmitry Nadezhin, Austin Lee, Cuong Kim Chau, Ben Selfridge

October 6, 2016

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Goal

• Verify data-path for new implementations of:

– 32/64-bit floating-point division and square root

• fdivd

• fdivs

• fsqrtd

• fsqrts

– 32/64-bit integer divide

• udivx

• sdivx

• udiv

• sdiv

2

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

The Problem and Key Result

3

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Tools

• ACL2

– Programming language written in subset of Lisp

– Theorem prover written in ACL2

• Proof engine used at AMD, IBM, Centaur, Motorola, Intel

• 2005 ACM Software System Award

– Maintained at Univ. of Texas with help from community

• ACL2 Books (~5500)

– A “book” is a library of functions and lemmas

• Arithmetic, RTL, security, proof and definition utilities

– Includes a Verilog parser and hardware symbolic simulator

• Support Tools: SAT solvers, waveform viewer

4

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Related Work

• Symbolic trajectory evaluation (Intel)

– C.-J. H. Seger and R. E. Bryant, “Formal verification by symbolic evaluation of partially-
ordered trajectories,” Formal Methods in System Design, vol. 6, no. 2, pp. 147–189, Mar.
1995.

• Floating-point verification

– D. Russinoff, “A mechanically checked proof of IEEE compliance of the floating-point
multiplication, division, and square root algorithms of the AMD-K7TM processor,” London
Mathematics Society Journal of Computation and Mathematics, no. 1, pp. 148–200, 1998.

– J. O’Leary, X. Zhao, R. Gerth, and C.-J. H. Seger, “Formally verifying IEEE compliance of
floating-point hardware,” Intel Technology Journal, vol. 3, no. 1, pp. 1–14, 1999.

• Hardware verification and tools

– A. Slobodova, J. Davis, S. Swords, and W. A. Hunt, “A flexible formal verification framework
for industrial scale validation,” in Formal Methods and Models for Codesign (MEMOCODE),
2011 9th IEEE/ACM International Conference on, July 2011, pp. 89–97.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Outline

• Intro

• Algorithm extraction

• Algorithm verification

• Reflections and challenges

• Goal: raise level of abstraction from low-level bit operations to higher-level
operations like *, +, and ~ of m-bit operands

6

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• Choose modules of interest

– For example:

• Tree of carry-save adders (CSAs)

• Nest of Booth encoders

7

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (1) Black-box chosen modules

– Write specification for those modules in ACL2

– Automatically verify the validity of those specifications using GL

• GL uses BDDs and SAT solvers “under the hood”

8

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (2) Create ACL2 version of the interconnect

– For example:

• The wires that connect the CSAs are connected in a particular way

– ACL2 version of interconnect is unverified at this point

9

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (3) Prove a higher-level specification

– Define a higher-level specification for the connected modules

– Prove specification’s validity using Boyer-Moore rewriting

– For example:

• sum+carry*2 = a+b+c+d+e+f+g+h

10

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (4) Black-box your larger piece of circuitry

– Prove that the ACL2 interconnect is the same as the Verilog interconnect

• I.E., that the Verilog wires really do connect the CSA’s that way!

11

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Breaking Up Is Hard To Do

• Decompose circuit into appropriately-sized blocks

• (4) Black-box your larger piece of circuitry

– Black-boxing doesn’t scale using Esim and GL

– Use SV (successor to Esim) in our latest work

• Scales better but we still have problems too large

12

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Outline

• Intro

• Algorithm extraction

• Algorithm verification

• Reflections and challenges

• Goal: show that the Goldschmidt algorithm (consisting of operations like *, +,
and ~ of m-bit operands), rounding, and exceptions implement IEEE 754

13

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

IEEE754 Specification in ACL2

• IEEE754 Standard on Floating-Point Arithmetic

– 80-page document written in English

• Our IEEE 754 specification in ACL2 includes

– Div, sqrt, add, mul, and fused mul-add

– All special values (+/- 0, +/-Infinity, NaNs)

– All exception flags

– Denormals

– Four rounding modes

– Customization for NaN values

• Validated our spec against millions of test vectors from Oracle’s test suite

14

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Goldschmidt Algorithm for Division

• Idea: choose T, ri such that

• Precision doubles with each iteration

• Algorithm:
T = table_lookup(B);
d0 = B*T; n0 = A*T;
r0 = 2 - d0;
for (i=0; i < MAX; ++i) {

di+1 = di*ri; ni+1 = ni*ri;
ri+1 = 2 - di+1;

}
final_approx = nMAX + inc

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Main Proof Obligation

• Each step introduces an error

– Lookup: T ~ 1/B. Define relative error u by T = 1/B - u/B

– Each multiplication, except last, is truncated from 2M to M bits. Error epsi is in [0, 2
-M)

– 2 - di+1 is implemented by taking one’s complement of di+1. This introduces fixed error 2
-M

• Golden question: Is error in final approximation small enough to yield an
IEEE754 answer after rounding is applied?

16

lookup m1 m2 roundmlast

first
approximation

final
approximation

comp12 m3 m4

-max_error < final_approx - A/B < max_error

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Error Analysis

• Express (final_approx - A/B) as a multivariate polynomial in u (lookup error) and
epsi (truncation error)

• This polynomial can be generated symbolically from the algorithm

• Given the interval for each variable, compute interval for (final_approx - A/B)
using methods from interval arithmetic

• Example: If lookup error u was only error, then final error for, e.g., final_approx =
n2 can be expressed as

final_approx - A/B = A*T*(-u4 -u5 -u6 …) + inc

with u in [-2-k, 2-k] and A*T < 2.

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Results of Error Analysis

• Proved main obligation using interval arithmetic

• We first implemented interval arithmetic in JavaTM and later verified
computations in ACL2

• We then experimented with reduced lookup tables to see if main obligation still
holds.

• This approach reduced the lookup table

– for division by 50%

– for square root by 75%

-max_error < final_approx - A/B < max_error

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Reflections and Challenges

• Approach is very similar to Symbolic Trajectory Evaluation (STE)

– Works very well for data-path verification

– Technical challenges involving Step 4 of Extraction (recomposition)

• Invariant-based methods

– More thorough but more time-consuming

– Necessary for verifying control logic

– Can community make invariant-based frameworks and methodologies more efficient for
users?

• Currently too time-consuming for industry to use on major products with deadlines

• A dream: automatically infer higher-level specifications for Verilog implementations

19

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Backup Slides

Copyright © 2016, Oracle and/or its affiliates. All rights reserved.

Interval Arithmetic Intermezzo

• Function of single input variable

– For each input interval, compute output interval

• Computing the output interval for multivariate polynomials is similar to computing
the output interval for univariate polynomials

22

