
Equivalence Checking By Logic

Relaxation

Eugene Goldberg

FMCAD,

Mountain View, CA, USA

October 3-6, 2016

Outline

• Introduction

• Equivalence checking by logic relaxation

• Experimental results and conclusions

Motivation

• Equivalence Checking (EC) is an important part

of formal verification

• Any progress in EC empowers logic synthesis

• Short EC proofs for structurally similar circuits

• Ideas of EC of combinational circuits can be re-

used in EC of sequential circuits and software

Solving EC

N'

X'

…

z'

N"

X"

…

z"

EQ(X',X")

where Grlx = FN'  FN"

Prove

EQ  Grlx  (z'  z"),

This reduces to proving

EQ  Grlx  ~(z' z")

UNSAT

EQ(x',x") = 1, iff x' = x"

Cut Image

Let Imgcut specify the cut image

Imgcut(q',q")=0, iff there is no

input (x',x"), x' = x" for which

N',N" produce (q',q")

x'

…

x"

…

N' N"

q' q"

EQ(X',X")

Cut

Let Cut = {z',z"}.

N' and N" are equivalent iff

Imgcut  (z'  z"),

Problem To Solve: Finding an

Inductive Proof Of Equivalence

X'

…

z'

X"

…

z"

…

Cuti

Cutk

Cut0

…

Given combin. circuits N' and N",
find formulas Hi such that

A simple inductive proof should
exist if N' and N" are struct. similar

• Imgi  Hi , 0 ≤ i < k

• Hi are as simple as possible

• Hi can be derived from Hi-1

• Hk  Imgk(z',z")

Some Background

Building inductive proofs of equivalence

• Berman, Trevillyan 1988

• Brand 1993

• Kuehlmann, Krohm 1996

• Goldberg, Prasad, Brayton 2001

• Mishchenko,Chatterjee,Brayton,Een 2006

Proofs are based on derivation of

pre-defined relations e.g. equivalences

Outline

• Introduction

• Equivalence checking by logic relaxation

• Experimental results and conclusions

Structure Of Cut Image

Assignments excluded from cut image: Sexcl = Srlx U Simp

X'
…

z'

X"

…

z"

Cut

EQ(X',X")

q' q"

Srlx = {(q',q") | only relaxed inputs (x',x")

where x' ≠ x" can produce (q',q") }

Simp = {(q',q") | no input (x',x") can

produce (q',q") }

(q',q")  Simp iff

• q' cannot be produced in N' and/or

• q" cannot be produced in N"

Definition Of Boundary

Formulas

Boundary formula Hcut :

1. If (q',q")  Srlx , then Hcut(q',q") = 0

2. If (q',q")  Simp , then Hcut(q',q") can

take an arbitrary value

3. Imgcut  Hcut

EC by Logic Relaxation:

 “replace” Imgcut with boundary formula Hcut

Boundary Formula for

Cut = {z',z" }

X'
…

z'

X"

…

z"

Cut

EQ(X',X")

N' N"
Assume that N' and N"

are not constants

Hcut  Imgcut

Testing if N' is a constant:

two easy SAT checks

Sexcl = Srlx Simp= 

Boundary Formula And Partial

Quantifier Elimination

x'

…

x"

…

N' N"

EQ(X',X")

Cut

Hcut  W [FM]  W [EQ FM]

Complete Quantif. Elimin.

Imgcut  W [EQ FM]

W = Vars(FM) \ Vars(Cut)

Partial Quantif. Elimin.
M

EQ  Grlx  ~(z'  z") is equisat. with

Hcut  Grlx  ~(z'  z")
where Grlx = FN'  FN"

Contrasting Cut Image And

Boundary Formulas

… …

N' N"

M

EQ(X',X")

Cut Imgcut

… …

N' N"

M

EQ(X',X")

Cut Hcut

Boundary Formulas Of

Structurally Similar Circuits

x'

…

x"

…

N' N"

EQ(X',X")

Suppose,  v  Cut'

 v = gv(Lv) where Lv  Cut"

Cut
Cut' Cut"

Let Maxcut be the largest

value of Lv , v  Cut'

Then Hcut can be built from

(Maxcut + 1)-literal clauses

EC By Logic Relaxation

X'

…

z'

X"

…

z"

where H0= EQ(X',X") …

Cuti

Cutk

Compute H0,..,Hk

Cut0
If Hk  (z'  z"),

N' and N" are equivalent

Hi  Wi [FMi]  Wi [Hi-1  FMi]

Wi = Vars(FMi) \ Vars(Cuti)
Mi

Cut0 = X' X",...,Cutk={z',z“ }

If, say, Hk(z' =0,z"=1)=1 and N', N"

can produce 0 and 1, they are inequivalent

Outline

• Introduction

• Equivalence checking by logic relaxation

• Experimental results and conclusions

Non-Trivial Example Of EC

Mlps computes a median

bit of an s-bit multiplier

h is an additional input

variable

If h=1, then N' and N" compute Mlps

if h=0, then N' and N" evaluate to 0

Operands A and B where

A={a1,..,as}, B={b1,...,bs}

Comparison With ABC

val. of s

in Mlps

#cuts EC by

LoR (s.)

ABC

 (s.)

10 37 4.5 10

11 41 7.1 38

12 45 11 142

13 49 16 757

14 53 25 3,667

15 57 40 11,237

16 61 70 > 6 h

• Partial Quantifier Elimination (a variation of HVC-14 algorithm) is

based on machinery of D-sequents (FMCAD-12 , FMCAD-13)

• ABC is a high-quality tool developed at UC, Berkeley

Hi  Wi [FMi]  Wi [Hi-1  FMi]

Formulas Hi were comp-

uted approximately

 FMi specifies logic below i-th cut

Only a subset of clauses of

FMi was used

Proving Inequivalence

Form.

type

#solved total

time (s)

median

time (s)

 95 > 3,490 4.2

  100 1,030 1.0

Sat-solver : Minisat 2.0, Time limit: 600 s

 Formula 

 EQ(X',X")  FN'  FN"  ~(z' z")

 Formula 

 H3  FN'  FN"  ~(z' z")

Formula H3 was computed precisely

Conclusions

• Relative_complexity(N',N") << Absolute_complexity(N',N")

• EC by logic relaxation gives a general solution

• It can be extended to sequential circuits/programs

• Efficient partial quantifier elimination is of great value

