Equivalence Checking By Logic Relaxation

Eugene Goldberg

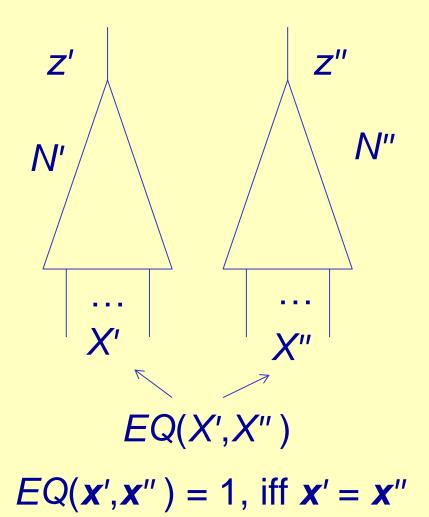
FMCAD, Mountain View, CA, USA October 3-6, 2016

- Introduction
- Equivalence checking by logic relaxation
- Experimental results and conclusions

Motivation

- Equivalence Checking (EC) is an important part of formal verification
- Any progress in EC empowers logic synthesis
- Short EC proofs for structurally similar circuits
- Ideas of EC of combinational circuits can be reused in EC of sequential circuits and software

Solving EC

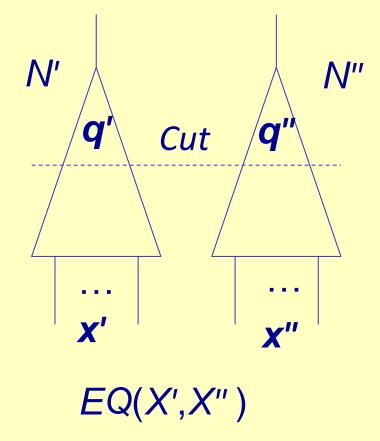


Prove $EQ \wedge G_{rlx} \Rightarrow (z' \equiv z''),$

where $G_{rlx} = F_{N'} \wedge F_{N''}$

This reduces to proving $EQ \land G_{rlx} \land \sim (z' \equiv z'')$ UNSAT

Cut Image

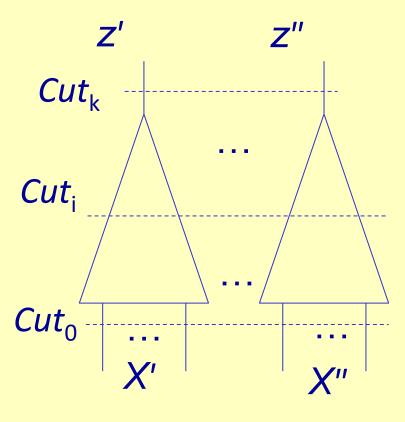


Let Img_{cut} specify the cut image

 $Img_{cut}(q',q'')=0$, iff there is no input (x',x''), x' = x'' for which N',N'' produce (q',q'')

Let $Cut = \{z', z''\}$. *N*' and *N*'' are equivalent iff $Img_{cut} \Rightarrow (z' \equiv z'')$,

Problem To Solve: Finding an Inductive Proof Of Equivalence



Given combin. circuits N' and N'', find formulas H_i such that

- $Img_i \Rightarrow H_i$, $0 \le i < k$
- *H*_i are as simple as possible
- $H_{\rm i}$ can be derived from $H_{\rm i-1}$
- $H_{\rm k} \equiv Img_{\rm k}(z',z'')$

A simple inductive proof should exist if *N*' and *N*'' are struct. similar

Some Background

Building inductive proofs of equivalence

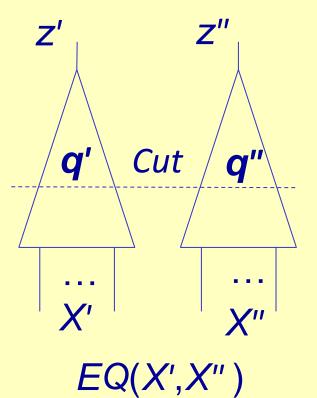
- Berman, Trevillyan 1988
- Brand 1993
- Kuehlmann, Krohm 1996
- Goldberg, Prasad, Brayton 2001
- Mishchenko, Chatterjee, Brayton, Een 2006

Proofs are based on derivation of pre-defined relations e.g. equivalences

- Introduction
- Equivalence checking by logic relaxation
- Experimental results and conclusions

Structure Of Cut Image

Assignments excluded from cut image: $S_{excl} = S_{rlx} U S_{imp}$



 $S_{rlx} = \{ (q',q'') \mid only relaxed inputs (x',x'') \\ where x' \neq x'' can produce (q',q'') \}$

S_{imp} = {(*q*',*q*'') | no input (*x*',*x*'') can produce (*q*',*q*'') }

 $(\boldsymbol{q'}, \boldsymbol{q''}) \in S_{imp}$ iff

- q' cannot be produced in N' and/or
- q" cannot be produced in N"

Definition Of Boundary Formulas

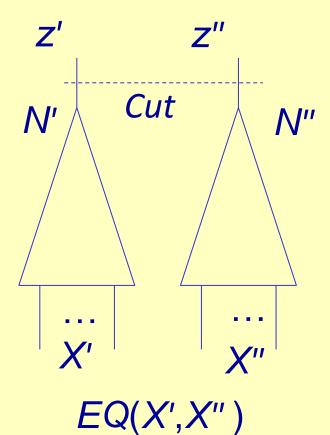
EC by Logic Relaxation: "replace" Img_{cut} with boundary formula H_{cut}

Boundary formula H_{cut} :

- 1. If $(\boldsymbol{q}', \boldsymbol{q}'') \in S_{rlx}$, then $H_{cut}(\boldsymbol{q}', \boldsymbol{q}'') = 0$
- 2. If $(\mathbf{q}', \mathbf{q}'') \in S_{imp}$, then $H_{cut}(\mathbf{q}', \mathbf{q}'')$ can take an arbitrary value

3. $Img_{cut} \Rightarrow H_{cut}$

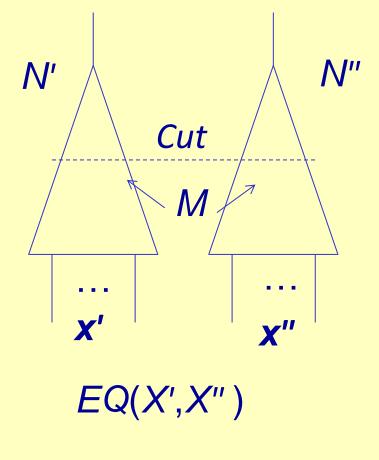
Boundary Formula for Cut = {z',z" }



Assume that *N*' and *N*'' are not constants $S_{imp} = \emptyset \implies S_{excl} = S_{rlx}$ \downarrow $H_{cut} \equiv Img_{cut}$

Testing if *N*' is a constant: two easy SAT checks

Boundary Formula And Partial Quantifier Elimination

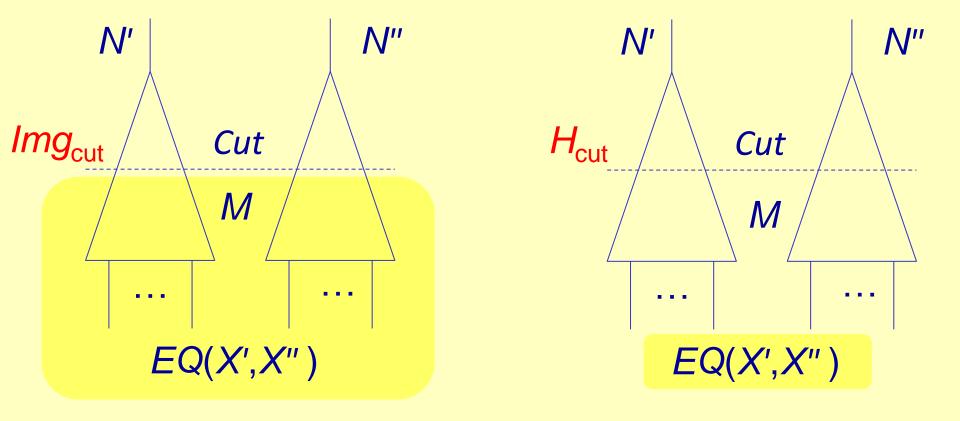


Complete Quantif. Elimin. $Img_{cut} \equiv \exists W [EQ \land F_{M}]$ $W = Vars(F_{M}) \land Vars(Cut)$

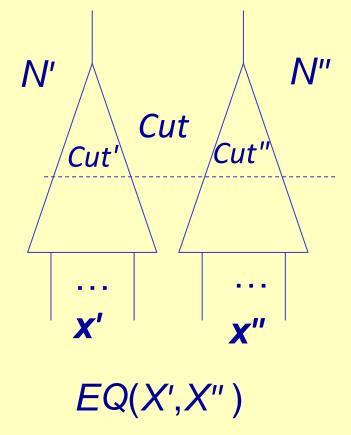
Partial Quantif. Elimin. $H_{\text{cut}} \land \exists W [F_{\text{M}}] \equiv \exists W [EQ \land F_{\text{M}}]$

$$\begin{split} & EQ \wedge G_{\text{rlx}} \wedge \ \ \ \sim (z' \equiv z'') \text{ is equisat. with} \\ & H_{\text{cut}} \wedge G_{\text{rlx}} \wedge \ \ \sim (z' \equiv z'') \\ & \text{where } G_{\text{rlx}} = F_{\mathcal{N}'} \wedge F_{\mathcal{N}''} \end{split}$$

Contrasting Cut Image And Boundary Formulas



Boundary Formulas Of Structurally Similar Circuits

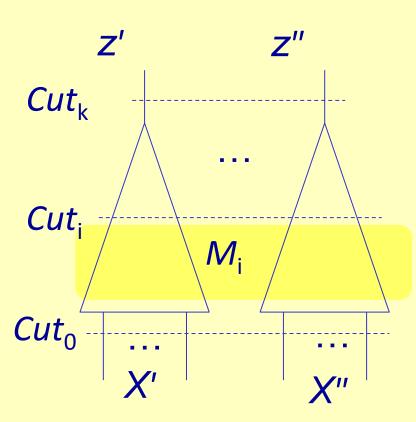


Suppose, $\forall v \in Cut'$ $v = g_v(L_v)$ where $L_v \subseteq Cut''$

Let Max_{cut} be the largest value of $|L_v|$, $\forall v \in Cut'$

Then H_{cut} can be built from $(Max_{cut} + 1)$ -literal clauses

EC By Logic Relaxation

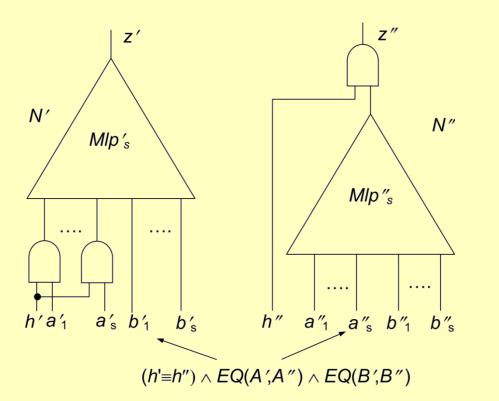


 $Cut_0 = X' \cup X'', \dots, Cut_k = \{z', z''\}$ Compute $H_0, ..., H_k$ where $H_0 = EQ(X', X'')$ $H_{i} \wedge \exists W_{i} [F_{Mi}] \equiv \exists W_{i} [H_{i-1} \wedge F_{Mi}]$ $W_{i} = Vars(F_{Mi}) \setminus Vars(Cut_{i})$ If $H_k \Rightarrow (Z' \equiv Z'')$, N' and N" are equivalent

If, say, $H_k(z'=0,z''=1)=1$ and N', N''can produce 0 and 1, they are inequivalent

- Introduction
- Equivalence checking by logic relaxation
- Experimental results and conclusions

Non-Trivial Example Of EC



*Mlp*_s computes a median bit of an s-bit multiplier

Operands A and B where $A=\{a_1,...,a_s\}, B=\{b_1,...,b_s\}$

h is an additional input variable

If h=1, then N' and N'' compute Mlp_s if h=0, then N' and N'' evaluate to 0

Comparison With ABC

- Partial Quantifier Elimination (a variation of HVC-14 algorithm) is based on machinery of D-sequents (FMCAD-12, FMCAD-13)
- *ABC* is a high-quality tool developed at UC, Berkeley

val. of s in <i>Mlp</i> s	#cuts	EC by LoR (s.)	ABC (s.)
10	37	4.5	10
11	41	7.1	38
12	45	11	142
13	49	16	757
14	53	25	3,667
15	57	40	11,237
16	61	70	>6h

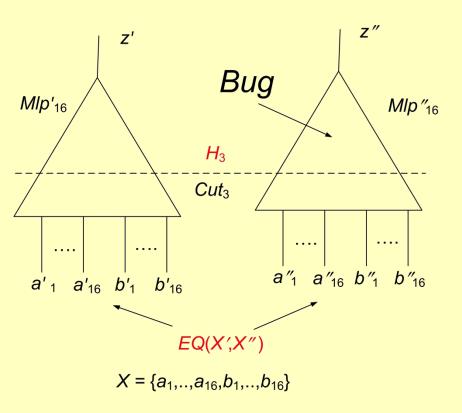
Formulas *H*_i were computed approximately

 $H_{i} \wedge \exists W_{i} [F_{Mi}] \equiv \exists W_{i} [H_{i-1} \wedge F_{Mi}]$

F_{Mi} specifies logic below *i*-th cut

Only a subset of clauses of $F_{\rm Mi}$ was used

Proving Inequivalence



Formula α $EQ(X',X'') \wedge F_{N'} \wedge F_{N''} \wedge \sim (z' \equiv z'')$

Formula β $H_3 \wedge F_{N'} \wedge F_{N''} \wedge \sim (z' \equiv z'')$

Formula *H*₃ was computed **precisely**

Sat-solver : Minisat 2.0, Time limit. 600 s

Form. type	#solved	total time (s)	median time (s)
α	95	> 3,490	4.2
β	100	1,030	1.0

Conclusions

- Relative_complexity(N',N'') << Absolute_complexity(N',N'')
- EC by logic relaxation gives a general solution
- It can be extended to sequential circuits/programs
- Efficient partial quantifier elimination is of great value