
Critical Systems Group
University of Minnesota

Code
Development

Requirements
Engineering

System
Design

Software
Architectural

Design

Acceptance
Test

System
Test

Integration
Test

Unit Test

Component
Software

Design

improve change impact assessment

improve scope management

creating
assurance
arguments

Inductive Validity Cores for Formal Verification

 Vacuity Detection

 Checking Requirements
Completeness (Coverage
Metrics for Formal
Verification)

 Requirements Traceability

 Symbolic Simulation/ Test
Case Generation

 Explanation of Model
Inconsistencies

Running time (sec) min max avg stdev
All_IVCs + proof time 0.25 2388.50 60.18 257.73

minimization + All_IVCs +
proof 0.25 2388.50 60.26 257.86

IVC_UC + proof time 0.062 14.758 1.38 2.04

IVC_UCBF + proof time 0.248 1323.51 17.24 104.83

IVC_MUST + proof time 0.25 1010.82 20.64 98.97

Proof time 0.047 14.617 1.299 1.94
All_IVCs 0.125 2375.0 58.88 256.52
IVC_UC 0.0 1.42 0.08 0.18

minimization 0.0 5.79 0.07 0.36

Running time Overhead

Algorithm min max avg stdev

All_IVCs 13.6% 101034% 2544% 7764%

Minimization 0.0% 3646% 26% 181%

IVC_UC 0.0% 100% 10% 11%

IVC_UCBF 14.1% 11124% 882% 1512%

IVC_MUST 13.7% 10530% 1081% 1613%

Coverage of different algorithms

IVC sizes min max avg stdev
IVC_UC 1 141 12.741 15.986

IVC_UCBF 1 141 12.174 16.092
IVC_MUST 1 129 11.644 15.027

Ratio of IVC sizes min max avg stdev

IVC_UC to IVC_UCBF 100% 360% 110.5% 23.0%

IVC_MUST to
IVC_UCBF 13.3% 100% 95.9% 12.1%

IVC_UC to IVC_MUST 100% 825% 119.5% 47.3%

Building Blocks

 Source artifact (requirement or property) r ∈ ∆
 Target artifacts (implementation or model elements)

S ⊆ Σ

 S ⊦ r for S ⊆ Σ and r ∈ ∆ when S satisfies r

 S is an IVC set

 MIVC: a minimal set of target artifacts to construct a
proof

 maps a requirement to an IVC set

MIVC (r, s) ≡ s ⊦ r ∧ (¬∃ s0 . s0⊂ s ∧ s0 ⊦ r)

 There could be many IVCs for a property: all IVC sets

AIVC (r) ≡ { s| s ⊆ Σ ∧ (r, s) ∈MIVC }

all
implementation

atoms
Proof 3

Proof 4

Proof 1

Proof 2

property P

Why is my property valid?

Symbolic model checkers can construct proofs of properties over very complex models. However, the results reported by the tool when a
proof succeeds do not generally provide much insight to the user. We introduce Inductive Validity Cores (IVCs), minimal sets of model elements
necessary to construct inductive proofs, such as those constructed by modern model checking algorithms using k-induction and PDR. These IVCs
can serve as explanations of the proof. We have implemented and evaluated IVCs in the JKind model checker and explored several applications
of the idea.

Elaheh Ghassabani, Michael Whalen, and Andrew Gacek

Ca
teg

o
rizing

Ta
rg

et A
rtifa

cts

MUST (r) = ⋂ AIVC (r)
MAY (r) = (⋃AIVC (r)) \ MUST(r)
IRR (r) = Σ \ (⋃AIVC (r))

 Helicopter architecture proofs in the
DARPA HACMS project

 NSF Medical device project on the
GPCA model

 AGREE Symbolic Simulator, Part of
DARPA SOSITE project

 AGREE/JKind Test-Case Generator

 NASA CVFCS on the Quad-
redundant flight controller

 Rockwell Collins, part of
the AFRL SpEAR projectProperty

Model Elements

Lemmas

1) Reduce invariants and find
a minimal set of invariants

2) Obtain a minimum K by
which the property is
K-inductively provable

For each valid property:

3) For the obtained K, compute unsat-core
with a special IVC query

4) Unsat-core will contain an IVC set
5) Minimize the core to get a minimal IVC

set

Applications

	Slide Number 1

