Solving Relational Constraints with Extensions to a Theory of Finite Sets in SMT

Our Research

- Goal: Solving Relational Constraints with Extensions (Finite Sets in SMT
- Propose relational extensions to a theory of finite sets v cardinality
- Design and implement a calculus for the relational exte CVC4 SMT solver
- Develop a natural translator from Alloy to SMT

Related Work

- Alloy [1] is a declarative language for modeling and an structurally-rich problems based on relational logic wit transitive closure and cardinality
- The analysis of Alloy specification is performed automatically b Analyzer – a SAT-based finite model finder

Figure 1: The Alloy Analyzer

- Limitation: Can only automatically disprove properties, but not
- Limitation: Limited support for numerical reasoning
- To overcome the limitations of Alloy Analyzer, El Gha translated Alloy kernel language to SMT-LIB language leveraged SMT solvers to solve resulting SMT formula • Limitation: Heavy usage of quantifiers to axiomatize relational

Motivation

- Support relational constructs and operators natively in SMT solvers
- Build a natural translator from Alloy to SMT-LIB
- Leverage SMT solvers to solve the resulting SMT formulas
- Take advantage of other supported theories in SMT
- Translation require much less quantifiers
- Can prove and disprove properties of Alloy specifications

Baoluo Meng, Andrew Reynolds, Cesare Tinelli

The University of Iowa

	Our Approach – Relational Ext Finite Sets in
to a Theory of	
with	 Kshitj Bansal et al. introduced a theory A parametric sort: Set(α) with sort α for se Constant and function symbols:
ensions in	EMPTYSET : Set(α) SINGLETON : $\alpha \rightarrow$ Set(α) UNION, INTERSECTION, DIFFEREN
	Predicate symbols:
	$IS_{IN} : \alpha \times Set(\alpha) \qquad SUBSE$
	• A decision procedure for $\mathcal{T}_{\mathcal{S}}$ was implex • Also extended to support cardinality CARD:
nalyzing	Relational Exte
th built-in by the Alloy	 We propose extensions to T_S with relati Relational signature extensions:
$\xrightarrow{\mathbf{AT}} ?$	TCLOSURE : Set(Tuple) \rightarrow Set(Tuple) TRANSPOSE : Set(Tuple) \rightarrow Set(Tuple) JOIN : Set(Tuple) \times Set(Tuple) \rightarrow Set(Tuple) PRODUCT : Set(Tuple) \times Set(Tuple) \rightarrow Set(Tuple) Tuple = ($\alpha_1, \alpha_2,, \alpha_n$) of arity n where α_i is a solution
	• Developed a calculus for the relational
	A Relational Solver
ot prove them	
	Sets
azi et al. e [3] and as [6] l constructs	
	SAT Theory

Engine

Figure 2: A relational solver in CVC4

Engine

Others

tensions to a Theory of SMT

 $\mathcal{T}_{\mathcal{S}}$ of finite sets in SMT [5] et elements

- $\mathsf{ICE}: \mathsf{Set}(\alpha) \times \mathsf{Set}(\alpha) \to \mathsf{Set}(\alpha)$
- $\exists T : Set(\alpha) \times Set(\alpha)$ emented in CVC4 [4] $Set(\alpha) \rightarrow Int$

ensions

ional operators

ole) ort $\forall i \in [1,...,n]$

extensions

er in CVC4

- implemented in CVC4
- supported by CVC4
- calculus is sound, complete and terminating
- E.g. CARD(TCLOSURE(S)) = 2 + CARD(S)
- analysis. MIT press, 2012.
- 185 (2009): 825-885.
- Standard Version 2.6. 2010.

- Methods. Springer Berlin Heidelberg, 2011.

Conclusion

• Fully support Alloy kernel language in SMT natively

• The initial version of the calculus for the extensions has been

• Extended the CVC4 native language to accept relational operators

• Modular, can solve constraints in combination with all other theories

Future Work

• Identify decidable fragments of relational logic, for which our

• Fully support relational reasoning with cardinality • Complete the implementation of translator from Alloy to SMT

References

[1] Daniel Jackson. Software Abstractions: logic, language, and

[2] Barrett, Clark W., Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. Satisfiability Modulo Theories. Handbook of satisfiability

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. The SMT-LIB

[4] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In International Conference on Computer Aided Verification, pp. 171-177. Springer Berlin Heidelberg, 2011.

[5] Bansal, K., Reynolds, A., Barrett, C., Tinelli, C. A New Decision Procedure for Finite Sets and Cardinality Constraints in SMT.

[6] El Ghazi, Aboubakr Achraf, and Mana Taghdiri. Relational reasoning via SMT solving. International Symposium on Formal